
ar
X

iv
:2

30
2.

12
27

8v
1 

 [
m

at
h.

D
S]

  2
3 

Fe
b 

20
23

TOTAL JOINT ERGODICITY FOR TOTALLY ERGODIC SYSTEMS

ANDREAS KOUTSOGIANNIS AND WENBO SUN

Abstract. Examining multiple ergodic averages whose iterates are integer parts of real
valued polynomials for totally ergodic systems, we provide various characterizations of
total joint ergodicity, meaning that an average converges to the “expected” limit along
every arithmetic progression. In particular, we obtain a complete characterization when
the number of iterates is at most two, and disprove a conjecture of the first author. We
also improve a result of Frantzikinakis on joint ergodicity of Hardy field functions of
at most polynomial growth for totally ergodic systems, which extends a conjecture of
Bergelson-Moreira-Richter. Our method is to first use the methodology of Frantzikinakis,
which allows one to reduce the systems to rotations on abelian groups without using deep
tools from ergodic theory, then develop formulas for integrals of exponential functions
over subtori, and finally, compute exponential sums for integer parts of real polynomials.
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1. Introduction

1.1. The joint ergodicity and total joint ergodicity phenomena. Let (X,B, µ) be
a standard Borel probability space. If T : X → X is a measurable transformation which
preserves the measure µ (i.e., µ(T−1A) = µ(A) for all A ∈ B), then we say that the
quadruple (X,B, µ, T ) is a measure preserving system (or just a system). We will assume
in what follows that the transformation T is invertible. We are interested in the L2-limiting
behavior, as N → ∞, of multiple ergodic averages of the form

(1)
1

N

N
∑

n=1

T a1(n)f1 · . . . · T
aℓ(n)fℓ,

where the (ai(n))n, 1 ≤ i ≤ ℓ, are suitable integer valued sequences, and the fi’s are
arbitrary bounded functions; for a positive integer n, and a bounded function f, T n denotes
the composition T ◦ · · · ◦ T of n copies of T , and Tf(x) := f(Tx), x ∈ X.

In particular, we are interested in the case where the limit is the “expected” one.

Definition. For a collection of sequences a1, . . . , aℓ : N → Z, and a system (X,B, µ, T ),
we say that (a1(n))n, . . . , (aℓ(n))n are

• jointly ergodic for (X,B, µ, T ), if for all functions f1, . . . , fℓ ∈ L∞(µ) we have

lim
N→∞

1

N

N
∑

n=1

T a1(n)f1 · . . . · T
aℓ(n)fℓ =

∫

X
f1 dµ · . . . ·

∫

X
fℓ dµ,

where the convergence is in L2(µ). For ℓ = 1, we say that (a1(n))n is ergodic.
• totally jointly ergodic for (X,B, µ, T ), if for all functions f1, . . . , fℓ ∈ L∞(µ), W ∈
N, and r ∈ Z, we have

lim
N→∞

1

N

N
∑

n=1

T a1(Wn+r)f1 · . . . · T
aℓ(Wn+r)fℓ =

∫

X
f1 dµ · . . . ·

∫

X
fℓ dµ,

where the convergence is in L2(µ). For ℓ = 1, we say that (a1(n))n is totally
ergodic.1

Studying (1) for ai(n) = in, 1 ≤ i ≤ ℓ, Furstenberg managed to reprove (in [14])
Szemerédi’s theorem on arithmetic progressions.2 In the same article, he also showed that
the sequences (n)n, . . . , (ℓn)n are (totally) jointly ergodic for every weakly mixing system.3

1The notions of “ergodicity” and “total ergodicity” of a sequence are in general different. Let (X,B, µ, T )
be a system. T is ergodic (in which case we also call the system (X,B, µ, T ) ergodic) if whenever T−1A = A,
we have µ(A) ∈ {0, 1} (i.e., there are no T -invariant sets of non-trivial measure), and T is totally ergodic
(where we also call the system (X,B, µ, T ) totally ergodic) if Tn is ergodic for all n ∈ N. Taking an ergodic
transformation T which is not totally ergodic, say T k is not ergodic for some k ∈ N, we have from von
Neumman’s mean ergodic theorem that (n)n is an ergodic sequence, but (kn+ r)n is not for any r ∈ Z.

2Every dense subset of natural numbers contains arbitrarily long arithmetic progressions.
3We call a system (X,B, µ, T ) weakly mixing if T is weakly mixing, meaning that T × T is ergodic.



TOTAL JOINT ERGODICITY FOR TOTALLY ERGODIC SYSTEMS 3

A few years later, Bergelson showed (in [1]) that for all essentially distinct integer poly-
nomials p1, . . . , pℓ,

4 the sequences (p1(n))n, . . . , (pℓ(n))n are (totally) jointly ergodic for
every weakly mixing system. With this result not only he extended Furstenberg’s con-
vergence result on weakly mixing systems, but also introduced the PET (i.e., Polynomial
Exhaustion Technique) induction scheme, which led to a number of far-reaching extensions
of Szemerédi’s theorem with applications in various areas of mathematics.

It is natural to ask whether one can still get (total) joint ergodicity results by postulating
less assumptions on the system while simultaneously strengthening the assumptions on
the polynomial iterates. In this article, our main focus is to study total joint ergodicity
properties for totally ergodic systems. To this end, it is convenient for us to have the
following definition of independence of polynomials.

Definition. Let V ⊆ R with 0 ∈ V and p1, . . . , pℓ ∈ R[x]. We say that p1, . . . , pℓ are V -
independent if c1p1+ · · ·+cℓpℓ ∈ Q[x]+R, ci ∈ V, 1 ≤ i ≤ ℓ, implies that c1 = · · · = cℓ = 0;
otherwise, we call the pi’s V -dependent.

Note that for any finite family of real polynomials p1, . . . , pℓ, we have that

if p1, . . . , pℓ are V -independent,

then p1(W ·+r), . . . , pℓ(W ·+r) are V -independent for all W ∈ N and r ∈ Z.
(2)

Frantzikinakis and Kra showed (in [11]) that if p1, . . . , pℓ are R\Q∗-independent integer
polynomials,5 then (p1(n))n, . . . , (pℓ(n))n are (totally) jointly ergodic for every totally
ergodic system. Moreover, in that result, the independence assumption on the polynomial
family is also necessary (see comments after [11, Theorem 1.1], and Theorem D below).6

Karageorgos and the first author showed (in [18]) that if p1, . . . , pℓ are R-independent real
polynomials,7 then ([p1(n)])n, . . . , ([pℓ(n)])n are (totally) jointly ergodic for every ergodic
system.8

A conjecture9 of the first author of this article, following the philosophy of the results
that were stated above, i.e., postulating a stronger assumption on the system while simul-
taneously assuming a weaker independence condition on the polynomial iterates, is that
one should expect the following.

Conjecture 1. For ℓ ∈ N, let p1, . . . , pℓ ∈ R[x]. p1, . . . , pℓ are R\Q∗-independent if, and
only if, ([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly ergodic for every totally ergodic system.

Our first result is a positive answer to the sufficiency part of this conjecture.

Theorem A. For ℓ ∈ N, let p1, . . . , pℓ ∈ R[x]. If p1, . . . , pℓ are R\Q∗-independent, then
([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly ergodic for every totally ergodic system.

4A polynomial p ∈ Q[x] is called integer if p(Z) ⊆ Z (e.g., p(n) = n(n + 1)/2). The non-constant
polynomials p1, . . . , pℓ are essentially distinct if for every i 6= j, pi − pj is non-constant.

5In [11] such polynomials are called rationally independent (the independence condition there is pre-
sented in a different, equivalent, formulation).

6For characterizations of (total) joint ergodicity for integer polynomials, see also [4, 5, 12, 13]. Actually,
all the results we stated up to this point were dealing with the notion of “joint ergodicity”; it is because of
(2) that we can upgrade their conclusions to “total joint ergodicity”.

7In [18] such polynomials are called strongly independent.
8See [19] for a generalization of this result for sequences of variable real polynomials.
9This conjecture was never recorded anywhere formally.
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In fact, we prove a result more general than Theorem A, namely, Theorem E, which
deals with combinations of polynomials and tempered Hardy field functions. Our proof
relies on an improvement of a recent result of Frantzikinakis ([10, Theorem 1.9 (i)]–see
Theorem 1.1) on joint ergodicity, which also implies a generalization of [2, Conjecture 6.1].
We defer the details to Subsection 1.2.

As we mentioned above, the necessity part of Conjecture 1 holds when p1, . . . , pℓ are
integer polynomials. In the case ℓ = 1, we show that Conjecture 1 holds in general
(see Corollary 3.7 which is derived from Theorem D). On the other hand, we (somewhat
surprisingly) discover that the necessity part of Conjecture 1 is false in general. In fact, we
obtain necessary and sufficient conditions for total joint ergodicity of two real polynomials
p1, p2 with p1(0) = p2(0) = 0, which is the main result of the article.

Theorem B. For all p1, p2 ∈ R[x] with p1(0) = p2(0) = 0, ([p1(n)])n, ([p2(n)])n are totally
jointly ergodic for all totally ergodic systems if, and only if, the following holds:

(i) p1, p2 are R\Q∗-independent; or
(ii) p1 = f + cg, p2 = u(f + (c+ 1)g) for some f, g ∈ Q[x], where f is not a multiple

of g,10 f(0) = g(0) = 0, g 6≡ 0, c ∈ R\Q, with u = ±1, such that g is an integer
polynomial.

We remark that p1(0) = p2(0) = 0 is an arguably common (and sometimes necessary)
assumption in the study of multiple recurrence properties. However, it is natural to ask
whether one can get a characterization for polynomials with non-trivial constant terms
(see Question 2 below). Unlike the case of integer polynomials, the constant terms bring
many additional difficulties in the study of the equidistribution properties for iterates of
integer parts of real polynomials which are not integer ones. Indeed, it can happen that
for two polynomials p1, p2, in some totally ergodic system and for some a ∈ R, ([p1(n)])n,
([p2(n)])n behave differently than ([p1(n)])n, ([p2(n) + a])n (see Proposition 7.1).

Theorem B indicates that a characteristic condition for more than two polynomials
could be very intricate (see Problem 1). We also note that our method doesn’t generalize
to more than two terms (see Proposition 6.1, the argument of which works only for ℓ = 2).
Nevertheless, we were able to obtain a partial characterization in the general case.

Theorem C. For ℓ ∈ N, let p1, . . . , pℓ ∈ R[x]. If there exists a nonempty subset {i1, . . . , ik}
⊆ {1, . . . , ℓ} such that pi1 , . . . , pik are R\Q∗-dependent and all the irrational polynomi-
als11 in pi1 , . . . , pik , if any, are Q-independent, then there exists a totally ergodic system
(X,B, µ, T ) such that ([p1(n)])n, . . . , ([pℓ(n)])n are not totally jointly ergodic for (X,B, µ, T ).

By combining Theorems A and C, we deduce that for two special classes of polynomials,
the condition in Conjecture 1 is characteristic.

Theorem D. For ℓ ∈ N, let p1, . . . , pℓ ∈ Q[x] + R (resp. p1, . . . , pℓ ∈ R[x] so that all
the irrational polynomials in p1, . . . , pℓ, if any, are Q-independent). p1, . . . , pℓ are R\Q∗-
independent if, and only if, ([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly ergodic for every
totally ergodic system.

10By this we mean that there is no s ∈ Q such that f = sg.
11By this we mean polynomials which don’t belong to Q[x] + R.
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Noticing that the independence condition for integer polynomials of Frantzikinakis and
Kra is equivalent to R\Q∗-independence, we have that Theorem D generalizes the main
theorem of [11] as well.

1.2. Improvement of a result on joint ergodicity. One of the main ingredients of this
article is a recent criterion of Frantzikinakis ([10, Theorem 1.1]–see Theorem 2.4). In [10],
Frantzikinakis provided an approach to study joint ergodicity properties without using
either the Host-Kra theory of characteristic factors or equidistribution results on nilman-
ifolds, the combination of which is arguably the most influential approach to characterize
the convergence of (1) to the expected limit when the sequences a1, . . . , aℓ are coming
from suitable classes of functions. Using this result, not only he obtained new convergence
results, but also provided simpler proofs for most of the known ones.

As in [10], we assume that all Hardy fields H considered (see Subsection 2.1 for the
definition of a Hardy field and of functions in such a field) have the property:

(3) If a, b ∈ H, then a ◦ b−1 ∈ H, and a(·+ h) ∈ H for all h ≥ 0.

For two functions a, b : (x0,∞) → R, we write a ≺ b if |a(x)|/|b(x)| → 0 as x → ∞.

Definition. We say that a Hardy field function a : (x0,∞) → R, x0 ≥ 0,

(i) is tempered (and we write a ∈ T ) if there exists k ∈ N : xk−1 log x ≺ a(x) ≺ xk.
(ii) stays logarithmically away from rational polynomials if log x ≺ a(x)− p(x) for all

p ∈ Q[x].12

When the functions a1, . . . , aℓ and their differences are in T + P,13 Frantzikinakis also
showed the following result which resolves [2, Conjecture 6.1].

Theorem 1.1 (Theorem 1.9 (i), [10]). For ℓ ∈ N, let a1, . . . , aℓ : (x0,+∞) → R be
functions from a Hardy field H that satisfies (3). Suppose that the ai’s and their differ-
ences are in T + P and every non-trivial linear combination of them with at least one
irrational coefficient, stays logarithmically away from rational polynomials. Then, the se-
quences ([a1(n)])n, . . . , ([aℓ(n)])n are jointly ergodic for every totally ergodic system.

Following this newest approach of Frantzikinakis, and applying an extra twist in [10,
Lemma 6.2] (see Proposition 3.1), we obtain the following improvement of the previous
result.

Theorem E. For ℓ ∈ N, let a1, . . . , aℓ : (x0,+∞) → R be functions from a Hardy field H
that satisfies (3). Suppose that the ai’s and their differences are in T + P and every non-
trivial linear combination of them with irrational or zero coefficients, stays logarithmically
away from rational polynomials. Then, the sequences ([a1(n)])n, . . . , ([aℓ(n)])n are jointly
ergodic for every totally ergodic system.

12Or, equivalently, for all p ∈ Q[x] + R. Notice here the similarities between this condition and Weyl’s
criterion on equidistribution (in T) when a is restricted to P (see Remark 2.2 (ii)).

13As T denotes the class of tempered functions, and P the class of real polynomials, T +P denotes the
class of all linear combinations of tempered functions and real polynomials. The reason why it is natural
to work with these classes, is that differences of them (i.e., derivatives) fall into the same classes, allowing
one to study the corresponding averages by using variations of the PET induction, via van der Corput’s
lemma (approach that was initiated in [1]). For (total) joint ergodicity results for iterates coming from a
Hardy field, see [2, 6, 7, 8, 22].
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We prove Theorem E in Section 3. In particular, Theorem E implies Theorem A.

Example. To see why Theorem E improves Theorem 1.1, consider p1(n) = n3+an2+a2n,
and p2(n) = n2 + an, for a ∈ R\Q. Then, p1(n) − ap2(n) = n3 ∈ Q[n], so Theorem 1.1
does not provide any info on the joint ergodicity of the sequences ([p1(n)])n, ([p2(n)])n. On
the other hand, if b1p1(n) + b2p2(n) ∈ Q[n], for b1, b2 ∈ R\Q∗, we get b1 = b2 = 0, hence
Theorem E implies that ([p1(n)])n, ([p2(n)])n are indeed jointly ergodic for every totally
ergodic system.

Remark 1.2. Notice that if a function a(x) stays logarithmically away from rational poly-
nomials, then the same is true for the function a(Wx + r) for all W ∈ N, r ∈ Z. So, in
Theorems 1.1 and E (thus in the previous example as well) we actually have total joint
ergodicity for the sequences of interest.

1.3. Questions and Problems. For Hardy field iterates coming from T + P, one can
immediately ask the following question.

Question 1. What is a characteristic property in Theorem E so that the sequences ([a1(n)])n,
. . . , ([aℓ(n)])n are (totally) jointly ergodic for every totally ergodic system?

As we mentioned before, we expect the answer to this question to be very hard as it is
not clear how to answer it even for ℓ = 3, when we deal with total joint ergodicity and we
restrict our study to P (see Problem 1 below).

Restricting to P, while our method uses the assumption p1(0) = p2(0) = 0 crucially, it
is reasonable to ask the following.

Question 2. Can the assumption p1(0) = p2(0) = 0 be dropped in Theorem B?

Since our approach to Theorem B cannot be extended to ℓ ≥ 3, one can state the
following.

Problem 1. Extend Theorem B for ℓ ≥ 3.

While in general the notions of “ergodicity” and “total ergodicity” are different, we didn’t
manage to find a pair of polynomial sequences that are jointly ergodic but not totally jointly
ergodic.

Question 3. Does Theorem B characterize the notion of “joint ergodicity for all totally
ergodic systems” for ([p1(n)])n, ([p2(n)])n, where p1, p2 ∈ R[x] with p1(0) = p2(0) = 0?

In case the answer to the previous question is negative, a natural, follow-up problem is
the following (which can be stated for any ℓ ≥ 3 sequences as well).

Problem 2. Similarly to Theorem B, find a characterization to the “joint ergodicity for
all totally ergodic systems” notion.

1.4. Strategy and organization of the paper. We provide some background material
in Section 2. In Section 3, we prove all the results stated in Section 1 except Theorem B.
In fact, in Sections 2 and 3 we obtain stronger versions of these results for a fixed system
(instead of all systems) and also deal with W !-joint ergodic property (defined in Section 3 as
well), and then derive the aforementioned results as corollaries. By applying an additional
twist to the argument in [10, Lemma 6.2], we first prove Theorem E, an enhancement of
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Frantizikinakis’ result. This enables us to reduce Theorems A, C and D to the case where
the system is a rotation on an abelian group; we then use Weyl’s equidistribution theorem
to prove them.

Sections 4, 5 and 6 are devoted to the proof of Theorem B. In Section 4, we prove some
formulas for the integral of exponential functions over subtori of T2 and T3. In Section 5,
we first derive some equidistribution properties for polynomials, and then use the formulas
obtained in Section 4 to study limits of exponential sums, as

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(n)]
)

.

Using the tools developed in the previous sections, we prove Theorem B by splitting it into
various cases in Section 6.

Finally, in Section 7 (the appendix), we provide two explicit examples to demonstrate the
complexity of the behavior of joint ergodicity for ([p1(n)])n, ([p2(n)])n with p1, p2 ∈ R[x].

Notation. With N = {1, 2, . . .}, Z, Q, R, and C we denote the sets of natural, integer,
rational, real, and complex numbers respectively. For m ∈ N, Tm = (R/Z)m denotes the
m dimensional torus and (a(n))n denotes a sequence indexed over the natural numbers.
For every A ⊆ R, we write A∗ := A\{0}. [·] (resp. {·}) is the integer part (resp. fractional
part) function, where, for all x ∈ R, we have x = [x] + {x}. Finally, e(t) := e2πit, t ∈ R.

2. An improvement of Frantzikinakis’ result

2.1. Hardy field functions. Let R be the collection of equivalence classes of real val-
ued functions defined on some halfline (x0,∞), x0 ≥ 0, where two functions that agree
eventually are identified. These classes are called germs of functions. A Hardy field is a
subfield of the ring (R,+, ·) that is closed under differentiation. Here, we use the word
function when we refer to elements of R (understanding that all the operations defined
and statements made for elements of R are considered only for sufficiently large x ∈ R).

As it was mentioned in the introduction, following [10], we assume that all Hardy fields
H considered satisfy the property:

If a, b ∈ H, then a ◦ b−1 ∈ H, and a(·+ h) ∈ H for all h ≥ 0.14

In particular, we will deal with Hardy field functions form T + P, where we recall that
T denotes the class of tempered functions (i.e., functions a that, for some k ∈ N, satisfy
xk−1 log x ≺ a(x) ≺ xk), and P is the class of real polynomials.

2.2. Equidistribution on (sub)tori. Let Y be a finite-dimensional subtorus (i.e., a sub-
group of a finite-dimensional torus). We say that a sequence (xn)n ⊆ Y is equidistributed
on Y if for every complex-valued Riemann integrable function f on Y we have

lim
N→∞

1

N

N
∑

n=1

f(xn) =

∫

Y
f(x) dmY (x),

14Such a Hardy field is the one of Pfaffian functions which contains all the logarithmico-exponential func-
tions (a is a logarithmico-exponential Hardy field function if it belongs to a Hardy field of real valued func-
tions and it is defined on some (x0,+∞), x0 ≥ 0, by a finite combination of symbols +,−,×,÷, n

√·, exp, log
acting on the real variable x and on real constants). For more on Hardy field functions, see [3, 7, 8, 16].
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where mY is the Haar measure on Y.
The following is a consequence of a special case of [15, Theorem 1.9] (see also [21]).

Proposition 2.1. Let m, r ∈ N, vi = (vi,1, . . . , vi,m) ∈ Qm for 1 ≤ i ≤ r, H be the set of
(u1, . . . , um) ∈ Rm such that u1vi,1 + · · · + umvi,m = 0 for all 1 ≤ i ≤ r, Y be the set of
({x1}, . . . , {xm}) ∈ Tm for some (x1, . . . , xm) ∈ H, and p = (p1, . . . , pm) : Z → Rm be a
vector valued polynomial taking values in H. If ({p(n)})n is not equidistributed on Y, then
there exist k = (k1, . . . , km) ∈ Zm which does not belong to spanQ{v1, . . . , vr}

15 and some
t ∈ R such that k1p1(n) + · · · + kmpm(n) ≡ t mod 1 for all n ∈ Z.

Remark 2.2. (i) If we impose the additional assumption p(0) = (0, . . . , 0) in Proposi-
tion 2.1, then we have that k1p1(n) + · · ·+ kmpm(n) ∈ Z for all n ∈ Z.

(ii) Proposition 2.1 also extends to the case where r = 0, H = Rm and Y = Tm

(spanQ{v1, . . . , vr} is understood as the singleton {(0, . . . , 0)}). This is in fact Weyl’s

criterion (see [23], or [20]): For any sequence (xn)n ⊆ Rm, ({xn})n
16 is equidistributed on

Tm if, and only if, for all k ∈ Zm \ {(0, . . . , 0)}, we have that 1
N

∑N
n=1 e

2πi〈k,xn〉 → 0, as
N → ∞, where 〈·, ·〉 denotes the standard inner product.

2.3. Frantizikinakis’ criterion on joint ergodicity. As we mentioned in the introduc-
tion, the proof of Theorem E (as the one of Theorem 1.1) is primarily based on Frantziki-
nakis’ main result from [10] ([10, Theorem 1.1]–see Theorem 2.4 below). In order to state
it we need some additional definitions.

Following [17], given a system (X,B, µ, T ), we inductively define the Gowers-Host-Kra
seminorms ||| · |||k:

17 For f ∈ L∞(µ), we let

|||f |||0 :=

∫

f dµ, and for k ∈ N, |||f |||2
k

k := lim
N→∞

1

N

N
∑

n=1

|||f̄ · T nf |||2
k−1

k−1 .

Next, we define the spectrum of a transformation.

Definition. For a system (X,B, µ, T ) we let

Spec(T ) :=
{

t ∈ [0, 1) : Tf = e(t)f for some nonzero f ∈ L2(µ)
}

.

Remark 2.3. Notice that, for a totally ergodic transformation T, Spec(T ) ⊆ [0, 1) \Q∗, as
T cannot have an eigenvalue λ 6= 1 which is a root of unity.

The following notions of “good for seminorm estimates” and “good for equidistribution”
characterize joint ergodicity for ergodic systems.

Definition. For a collection of sequences a1, . . . , aℓ : N → Z, and a system (X,B, µ, T ),
we say that (a1(n), . . . , aℓ(n))n is

(i) good for seminorm estimates for (X,B, µ, T ), if there exists s ∈ N such that if
f1, . . . , fℓ ∈ L∞(µ) and |||fi0 |||s = 0 for some 1 ≤ i0 ≤ ℓ, then

lim
N→∞

1

N

N
∑

n=1

T a1(n)f1 · . . . · T
ai0 (n)fi0 = 0,

15spanA{v1, . . . , vr} denotes all the linear combinations of v1, . . . , vr with coefficients from A, A ⊆ R.
16If xn = (x1(n), . . . , xm(n)), by ({xn})n we mean ({x1(n)}, . . . , {xm(n)})n.
17||| · |||0, which is not a seminorm, is defined for convenience.
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where the convergence is in L2(µ). It is good for seminorm estimates, if it is good
for seminorm estimates for every ergodic system.

(ii) good for equidistribution for (X,B, µ, T ), if for all t1 . . . , tℓ ∈ Spec(T ), not all of
them 0, we have

(4) lim
N→∞

1

N

N
∑

n=1

e
(

t1a1(n) + . . . + tℓaℓ(n)
)

= 0.

It is good for equidistribution, if it is good for equidistribution for every system,
or, equivalently, if (4) holds for all t1, . . . , tℓ ∈ [0, 1), not all of them 0.

Theorem 2.4 (Theorem 1.1, [10]). For ℓ ∈ N, let a1, . . . , aℓ : N → Z be sequences.
(a1(n))n, . . . , (aℓ(n))n are jointly ergodic for an ergodic system (X,B, µ, T ) if, and only if,
(a1(n), . . . , aℓ(n))n is good for seminorm estimates and equidistribution for (X,B, µ, T ).

For the class of Hardy field functions from T + P, we have the following result which
follows from [10, Proposition 6.5].

Proposition 2.5 (Proposition 6.5, [10]). For ℓ ∈ N, let a1, . . . , aℓ : (x0,∞) → R be func-
tions from a Hardy field that satisfies (3) such that the ai’s and their pairwise differences
are non-constant functions in T + P. Then ([a1(n)], . . . , [aℓ(n)])n is good for seminorm
estimates.

Remark 2.6. To show our joint ergodicity results, by Theorem 2.4, via Proposition 2.5,
it only suffices to verify the “good for equidistribution” property, which is a Weyl-type sum,
hence, we only have to check equidistribution on (sub)tori.

In particular, for Hardy field functions of at most polynomial growth,18 hence for func-
tions from T as well, we have the following result of Boshernitzan.

Theorem 2.7 ([3]). Let a : (x0,∞) → R be a Hardy field function with at most polynomial
growth. (a(n))n is equidistributed on T if, and only if, it stays logarithmically away from
rational polynomials.

2.4. The improved condition on joint ergodicity. Using Theorem 2.7, Theorem E
will follow from Proposition 2.8 (see below). The latter provides a sufficient condition
of (total) joint ergodicity for a specific system (its proof follows the philosophy of [10,
Lemma 6.2]). While our assumption is weaker than that of [10, Lemma 6.2] (we restrict
the coefficients of the linear combinations to the spectrum of the transformation T and not
the whole set of irrational numbers), our conclusion is stronger.

It is more convenient for us, instead of dealing with Spec(T ), to work with the set

S(T ) := Spec(T ) + Z.

Notice that, because of Remark 2.3, S(T ) ⊆ (R \Q) ∪ Z.

Proposition 2.8. Let (X,B, µ, T ) be a totally ergodic system and a1, . . . , aℓ : (x0,+∞) →
R be functions from a Hardy field that satisfies (3). Suppose that the ai’s and their differ-
ences are in T +P and that every non-trivial linear combination of them, with coefficients
from S(T )\Z∗, stays logarithmically away from rational polynomials. Then, the sequences
([a1(n)])n, . . . , ([aℓ(n)])n are totally jointly ergodic for (X,B, µ, T ).

18A function a : (x0,∞) → R has at most polynomial growth if there exists k ∈ N such that a(x) ≺ xk.



10 ANDREAS KOUTSOGIANNIS AND WENBO SUN

To show Proposition 2.8, we follow the arguments of [10, Lemma 6.2]. In our proof, we
delete the ti’s that are equal to 0 at the beginning, and then continue working under the
assumption that all the ti’s are nonzero (in which case the claim holds and leads to the
required strengthening of [10, Proposition 6.4] and Theorem 1.1).

Proof of Proposition 2.8. We first claim that for any s ≤ ℓ, t1, . . . , ts ∈ S(T )\Z, and for
any Riemann integrable function G : Ts → C, we have that

(5) lim
N→∞

1

N

N
∑

n=1

e
(

s
∑

i=1

tiai(n)
)

G(a1(n), . . . , as(n)) = 0.

To see this, approximating G from below and above by continuous functions, and then by
trigonometric polynomials, we may assume without loss of generality that G(x1, . . . , xs) =
e(k1x1 + · · ·+ ksxs), x1, . . . , xs ∈ T for some k1, . . . , ks ∈ Z.

The left-hand side of (5) equals to

(6) lim
N→∞

1

N

N
∑

n=1

e
(

s
∑

i=1

(ti + ki)ai(n)
)

.

Clearly, each ti + ki belongs to S(T )\Z. Since every non-trivial linear combination of
a1, . . . , aℓ, with coefficients from S(T )\Z∗, stays logarithmically away from rational poly-
nomials, we have from Theorem 2.7 that (6) equals to 0 by Weyl’s equidistribution criterion.

To prove the statement, by Remark 2.6, it suffices to show that for all t1, . . . , tℓ ∈
S(T )\Z∗ not all equal to 0, we have that

lim
N→∞

1

N

N
∑

n=1

e
(

ℓ
∑

i=1

ti[ai(n)]
)

= 0.

We may assume without loss of generality that t1, . . . , tm 6= 0 and tm+1 = · · · = tℓ = 0 for
some 1 ≤ m ≤ ℓ. Then, applying the claim for s = m and G(x1, . . . , xm) := e(−{x1}t1 −
. . .− {xm}tm), x1, . . . , xm ∈ T, we have that

lim
N→∞

1

N

N
∑

n=1

e
(

ℓ
∑

i=1

ti[ai(n)]
)

= lim
N→∞

1

N

N
∑

n=1

e
(

m
∑

i=1

ti[ai(n)]
)

= lim
N→∞

1

N

N
∑

n=1

e
(

m
∑

i=1

tiai(n)
)

e
(

−

m
∑

i=1

ti{ai(n)}
)

= lim
N→∞

1

N

N
∑

n=1

e
(

m
∑

i=1

tiai(n)
)

G(a1(n), . . . , am(n)) = 0,

as was to be shown. �

3. Total joint ergodicity for special classes of polynomials

In this section, we prove Theorems E, A, C, and D. We first provide in Subsection 3.1
variations of the last three theorems for a fixed system (as we did in Proposition 2.8 for
Theorem E), and then derive the desired results in Subsection 3.2.
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3.1. Total joint ergodicity for a fixed totally ergodic system. We start with an
implication of Proposition 2.8. Restricting to P, we get the following.

Proposition 3.1. Let ℓ ∈ N, (X,B, µ, T ) be a totally ergodic system, and p1, . . . , pℓ ∈ R[x].
If p1, . . . , pℓ are S(T )\Z∗-independent, then ([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly er-
godic for (X,B, µ, T ).

For W ∈ N, we now define the notion of W -joint ergodicity.

Definition. For ℓ ∈ N, a collection of sequences a1, . . . , aℓ : N → Z, and W ∈ N, we
say that (a1(n))n, . . . , (aℓ(n))n are W -jointly ergodic for the system (X,B, µ, T ), if for all
f1, . . . , fℓ ∈ L∞(µ), we have

lim
N→∞

1

N

N
∑

n=1

T a1(Wn)f1 · . . . · T
aℓ(Wn)fℓ =

∫

X
f1 dµ · . . . ·

∫

X
fℓ dµ,

where the convergence takes place in L2(µ). For ℓ = 1, we say that (a1(n))n is W -ergodic.

Proposition 3.2. Let ℓ ∈ N, (X,B, µ, T ) be a totally ergodic system, and p1, . . . , pℓ ∈
R[x]. If there exists a nonempty subset {i1, . . . , ik} ⊆ {1, . . . , ℓ} such that pi1 , . . . , pik
are S(T )\Z∗-dependent and all the irrational polynomials in pi1 , . . . , pik , if any, are Q-
independent, then there exists W0 ≡ W0(p1, . . . , pℓ) ∈ N such that for all W ≥ W0,
([p1(n)])n, . . . , ([pℓ(n)])n are not W !-jointly ergodic for (X,B, µ, T ).

Proof. By setting the functions fi to be constant 1 for polynomials outside of the set
{pi1 , . . . , pik}, we may assume without loss of generality that {i1, . . . , ik} = {1, . . . , ℓ}.
Then, there exist ci ∈ S(T )\Z∗, not all of them 0 with

(7) c1p1 + · · ·+ cℓpℓ = q ∈ Q[x] + R.

We may assume without loss of generality that p1, . . . , pm /∈ Q[x] + R and pm+1, . . . , pℓ ∈
Q[x] + R. By the assumption, we have that p1, . . . , pm are Q-independent. Multiplying
both sides of (7) by an integer if necessary, we may assume without loss of generality that
q ∈ Z[x] + R. It is clear that there exists W0 ≡ W0(p1, . . . , pℓ) ∈ N such that for all
W ≥ W0, we have that pi(W !n) ∈ Z[n] + R, m+ 1 ≤ i ≤ ℓ. It suffices to show that

lim
N→∞

1

N

N
∑

n=1

e
(

ℓ
∑

i=1

ci[pi(W !n)]
)

6= 0.

Note that the left-hand side of the previous relation is equal to

lim
N→∞

1

N

N
∑

n=1

e
(

q(W !n)−

ℓ
∑

i=1

ci{pi(W !n)}
)

= lim
N→∞

1

N

N
∑

n=1

e
(

−

m
∑

i=1

ci{pi(W !n)}
)

· v,

where v = e
(

q(0)−
∑ℓ

i=m+1 ci{pi(0)}
)

.

Let F : Tm → C, with F (x1, . . . , xm) = e
(

−
∑m

i=1 cixi

)

. Then F is a Riemann integrable

function. Since p1, . . . , pm are Q-independent, the same is true for p1(W !·), . . . , pm(W !·).



12 ANDREAS KOUTSOGIANNIS AND WENBO SUN

By Weyl’s criterion, ({p1(W !n)}, . . . , {pm(W !n)})n is equidistributed on Tm. So,

lim
N→∞

1

N

N
∑

n=1

e
(

−

m
∑

i=1

ci{pi(W !n)}
)

=

∫

[0,1]m
F (x1, . . . , xm) d(x1, . . . , xm)

=

∫

[0,1]m
e
(

−
m
∑

i=1

cixi

)

d(x1, . . . , xm)

=

m
∏

i=1

∫

[0,1]
e(−cix) dx.

For all 1 ≤ i ≤ m, since ci /∈ Z∗, we have that
∫

[0,1] e(−cix) dx = 1 if ci = 0 and
∫

[0,1] e(−cix) dx = 1−e(−ci)
2πici

6= 0 if ci /∈ Z; the proof is complete. �

Combining the previous two results, we get the following result.

Corollary 3.3. Let ℓ ∈ N, (X,B, µ, T ) be a totally ergodic system, and p1, . . . , pℓ ∈ Q[x]+R

(resp. p1, . . . , pℓ ∈ R[x] so that all the irrational polynomials in p1, . . . , pℓ, if any, are Q-
independent). Then the following are equivalent:

(i) ([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly ergodic for (X,B, µ, T ).
(ii) There exists W0 ≡ W0(p1, . . . , pℓ) ∈ N such that ([p1(n)])n, . . . , ([pℓ(n)])n are W !-

jointly ergodic for (X,B, µ, T ) for all W ≥ W0.
(iii) There exists an infinite set I ≡ I(p1, . . . , pℓ) ⊆ N such that ([p1(n)])n, . . . , ([pℓ(n)])n

are W !-jointly ergodic for (X,B, µ, T ) for all W ∈ I.
(iv) p1, . . . , pℓ are S(T )-independent (resp. S(T )\Z∗-independent).

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are immediate, while the implications (iii) ⇒
(iv) and (iv) ⇒ (i) follow from Proposition 3.2 and Proposition 3.1 respectively. (When
p1, . . . , pℓ ∈ Q[x] + R, S(T )\Z∗-independence is equivalent to S(T )-independence.) �

Remark 3.4. By setting ℓ = 1 to the previous result, we get a characterization of when
([p(n)])n, where p ∈ R[x], is totally ergodic for a specific totally ergodic system.

Notice that Corollary 3.3 also implies the result of Frantzikinakis and Kra ([11, Theo-
rem 1.1]) which was presented in the introduction (in which joint ergodicity and total joint
ergodicity are equivalent). Indeed, if {p1, . . . , pℓ} are rationally independent integer poly-
nomials (in which case of course they belong to Q[x]+R), then they are S(T )-independent
(since S(T ) consists of irrational numbers and 0). So, by the previous corollary, we have
total joint ergodicity, hence joint ergodicity.

3.2. Total joint ergodicity for all totally ergodic systems. We are now ready to
use results from Subsections 2.4 and 3.1 to prove Theorems A, C, D and E; we start with
Theorem E.

Proof of Theorem E. Let (X,B, µ, T ) be a totally ergodic system. Since every non-trivial
linear combination of a1, . . . , aℓ, with coefficients from R\Q∗, stays logarithmically away
from rational polynomials, the same is true for coefficients from S(T )\Z∗. By Proposi-
tion 2.8, ([a1(n)])n, . . . , ([aℓ(n)])n are totally jointly ergodic for (X,B, µ, T ). �

Immediate implication of the previous result is Theorem A.
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Proof of Theorem A. The result follows from Theorem E since when we restrict to P, “stays
logarithmically away from rational polynomials” is equivalent to not be in Q[x] + R. �

To prove Theorem C, we need the following lemma.

Lemma 3.5. For any ℓ ∈ N and c1, . . . , cℓ ∈ R, there exist D ∈ N and a totally ergodic
system (X,B, µ, T ) such that Dc1, . . . ,Dcℓ ∈ S(T ). In particular, if c1, . . . , cℓ and 1 are
Q-independent, we can choose T so that S(T ) = spanZ{1, c1, . . . , cℓ}.

Proof. If all the ci’s are rational numbers, then we may take X to be the trivial system
and D to be the product of the denominators of the ci’s. So, we assume that at least
one of the ci’s is irrational. It is not hard to see that there exist a1, . . . , am ∈ R for some
1 ≤ m ≤ ℓ such that a1, . . . , am, 1 are Q-independent, and that each of the c1, . . . , cℓ is a
linear combination of a1, . . . , am, 1 with rational coefficients. So, there exists D ∈ N such
that each of Dc1, . . . ,Dcℓ is a linear combination of a1, . . . , am, 1 with integer coefficients.
Hence, it suffices to construct a totally ergodic system with {a1}, . . . , {am} ∈ Spec(T ).

Let X = Tm be endowed with the Haar measure and let T : X → X, with

T (x1, . . . , xm) = (x1 + a1, . . . , xm + am).

We have that {a1}, . . . , {am} ∈ Spec(T ). Moreover, since a1, . . . , am, 1 are Q-independent,
it is not hard to see that this system is totally ergodic.

The “in particular” part is straightforward from the proof (in which case {c1, . . . , cℓ} =
{a1, . . . , am}). �

Proof of Theorem C. Let {i1, . . . , ik} ⊆ {1, . . . , ℓ} be such that pi1 , . . . , pik are not R\Q∗-
independent and all the irrational polynomials in pi1 , . . . , pik (if any) are Q-independent.
Assume that c1pi1+· · ·+ckpik ∈ Q[x]+R for some c1, . . . , ck ∈ R\Q∗. By Lemma 3.5, there
exists a totally ergodic system (X,B, µ, T ) and D ∈ N such that Dc1, . . . ,Dck ∈ S(T ).
Then Dc1pi1 + · · ·+Dckpik ∈ Q[x]+R. Since c1, . . . , ck /∈ Q∗, we have that Dc1, . . . ,Dck ∈
S(T )\Z∗. By Proposition 3.2, there exists W0 ∈ N depending only on p1, . . . , pℓ such that
([p1(n)])n, . . . , ([pℓ(n)])n are not W !-jointly ergodic for (X,B, µ, T ) for all W ≥ W0, from
where the result follows. �

The following is a corollary of Theorems A and C.

Corollary 3.6. For ℓ ∈ N, let p1, . . . , pℓ ∈ Q[x] + R (resp. p1, . . . , pℓ ∈ R[x] so that all
the irrational polynomials in p1, . . . , pℓ, if any, are Q-independent). Then the following are
equivalent:

(i) ([p1(n)])n, . . . , ([pℓ(n)])n are totally jointly ergodic for every totally ergodic system.
(ii) There exists W0 ≡ W0(p1, . . . , pℓ) ∈ N such that for any W ≥ W0, ([p1(n)])n, . . . ,

([pℓ(n)])n are W !-jointly ergodic for every totally ergodic system.
(iii) There exists an infinite set I ≡ I(p1, . . . , pℓ) ⊆ N so that for any W ∈ I, ([p1(n)])n, . . . ,

([pℓ(n)])n are W !-jointly ergodic for every totally ergodic system.
(iv) p1, . . . , pℓ are R\Q∗-independent.

Proof. It is clear that (i)⇒(ii)⇒(iii). The implication (iii)⇒(iv) follows from the proof of
Theorem C. Finally, the implication (iv)⇒(i) follows from Theorem A. �

Proof of Theorem D. Follows immediately by the previous corollary. �
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By letting ℓ = 1 in Theorem D, we get that Conjecture 1 holds for a single real polyno-
mial.

Corollary 3.7. Let p ∈ R[x]. p is R\Q∗-independent19 if, and only if, ([p(n)])n is totally
ergodic for every totally ergodic system.

While for p1, . . . , pℓ ∈ Q[x] +R (resp. p1, . . . , pℓ ∈ R[x] so that all the irrational polyno-
mials in p1, . . . , pℓ, if any, are Q-independent) we have that W !-joint ergodicity for infinitely
many W ’s is equivalent to total joint ergodicity (result that holds for a single arbitrary
p ∈ R[x] as well), for two general polynomial iterates p1, p2 ∈ R[x] we can have that W !-
joint ergodicity for a co-finite set doesn’t even imply joint ergodicity (see Proposition 7.2).

4. Integrals of exponential functions on subtori

In this section we will prove two statements, Propositions 4.2 and 4.3, that will help
us deal with equidistribution results on subtori. In particular, the integrals that we are
computing in these two statements have connection with exponential sums, and will be
used in the proof of our main result, Theorem B, later in the article.

We first introduce some helpful notation: For (x, y) ∈ R2\{(x, 0): x ∈ R∗} we let

(

x

y

)

∗

:=

{

x/y, y 6= 0

1, x = y = 0
.

In particular, for (x, y) ∈ R2\{(x, 0): x ∈ R∗},
(

x

y

)

∗

6= 0 ⇔ x 6= 0 or y = 0.

Recall that e(x) = e2πix, x ∈ R. Using the previous notation, skipping the trivial compu-
tations, we have the following lemma.

Lemma 4.1. For all α ∈ R, N ∈ N, and t ∈ R∗, we have that

1

N

N−1
∑

n=0

e(αn) =

(

e(αN)− 1

N(e(α) − 1)

)

∗

,(8)

and

1

t

∫ t

0
e(αx) dx =

(

e(αt)− 1

2πiαt

)

∗

.(9)

In particular, (8) is nonzero if, and only if, α /∈ (Z/N)\Z, and (9) is nonzero if, and only
if, α /∈ (Z/t)∗, where, for s ∈ R∗, we set Z/s := {a ∈ R : as ∈ Z}.

In the rest of the paper, we will use Lemma 4.1 freely without citations. We start with
an estimate for the integral of exponential functions along one dimensional subtori of T2.

19I.e., p cannot be written as p = cq, where q ∈ Q[x] + R and c ∈ R\Q∗.
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Proposition 4.2. Let α, β ∈ R, a, b ∈ Z∗ with gcd(a, b) = 1, Y =
{

({x}, {y}) : (x, y) ∈ R2,

ax+ by = 0
}

, and mY be the Haar measure on Y. Then
∫

Y
e
(

αx+ βy
)

dmY (x, y) 6= 0

if, and only if, the following conditions hold: α
a /∈ (Z/a)\Z, β

b /∈ (Z/b)\Z, αa − β
b /∈ Z∗.

Proof. Let a, b have the same sign, say a, b > 0.20 Since ax+ by = 0, we have x = bt, and
y = −at, for some t ∈ R. So
∫

Y
e
(

αx+ βy
)

dmY (x, y) =

∫ 1

0
e
(

α{bt} + β{−at}
)

dt

=
ab−1
∑

j=0

∫ j+1
ab

j
ab

e
(

α{bt} + β{−at}
)

dt

=
ab−1
∑

j=0

∫ 1
ab

0
e
(

α
{

bt+
j

a

}

+ β
{

− at−
j

b

})

dt

=

ab−1
∑

j=0

∫ 1
ab

0
e
(

α{bt} + β{−at}+ α
{ j

a

}

+ β
{

−
j

b

}

− β
)

dt

=

ab−1
∑

j=0

∫ 1
ab

0
e
(

αbt− βat+ α
{ j

a

}

+ β
{

−
j

b

})

dt

=
ab−1
∑

j=0

e
(

α
{ j

a

}

+ β
{

−
j

b

})

·
1

ab





e
(

α
a − β

b

)

− 1

2πi
(

α
a − β

b

)





∗

.

By the Chinese remainder theorem,
({

j
a

}

,
{

− j
b

})

, 0 ≤ j ≤ ab− 1, takes all the values of
({

m
a

}

,
{

− n
b

})

, 0 ≤ m ≤ a− 1, 0 ≤ n ≤ b− 1, and so it takes each value exactly once.

Then

ab−1
∑

j=0

e
(

α
{ j

a

}

+ β
{

−
j

b

})

=

a−1
∑

k=0

b−1
∑

j=0

e
(

α
{k

a

})

· e
(

β
{

−
j

b

})

= e(β)

a−1
∑

k=0

b−1
∑

j=0

e
(

α ·
k

a

)

· e
(

−β ·
j

b

)

= e(β)ab





e(α)− 1

a
(

e
(

α
a

)

− 1
)





∗

·





e(−β)− 1

b
(

e
(

− β
b

)

− 1
)





∗

.

20The case where a, b have different signs is very similar and gives the same result modulo a nonzero
constant.
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To sum up, we have that
∫

Y
e
(

αx+ βy
)

dmY (x, y) 6= 0 if, and only if,

α

a
/∈ (Z/a)\Z,

β

b
/∈ (Z/b)\Z,

α

a
−

β

b
/∈ Z∗,

as was to be shown. �

We next estimate the integral of exponential functions along one dimensional subtori of
T3. Such estimates turn out to be very difficult to compute. We only provide an estimate
for a special case which will be used in our approach.

Proposition 4.3. Let α, β ∈ R, w ∈ Z, a, b, r ∈ Z∗ with gcd(a, b) = 1, Y =
{

({x}, {y}, {z}) :

(x, y, z) ∈ R3, ax+ by = rx+ bz = 0
}

, and mY be the Haar measure on Y . Then
∫

Y
e
(

αx+ βy +wz
)

dmY (x, y, z) 6= 0

if, and only if, the following conditions hold:

−
α

a
+

β

b
+

rw

ab
/∈ Z∗,−

α

a
+

rwb∗

a
/∈ (Z/a)\Z,

β

b
+

rwa∗

b
/∈ (Z/b)\Z,

where a∗ is the unique element in [1, b− 1] such that aa∗ ≡ 1 mod b, and b∗ is the unique
element in [1, a− 1] such that bb∗ ≡ 1 mod a.

Proof. Let a, b, r > 0.21 Since ax+ by = rx+ bz = 0, we may write x = −bt, y = at, and
z = rt, for some t ∈ R. So, using the fact that w is an integer, we get

∫

Y
e
(

αx+ βy + wz
)

dmY (x, y, z)

=

∫ 1

0
e
(

α{−bt}+ β{at}+ w{rt}
)

dt

=
ab−1
∑

j=0

∫
j+1
ab

j
ab

e
(

α{−bt}+ β{at}+ w{rt}
)

dt

=

ab−1
∑

j=0

∫ 1
ab

0
e
(

α
{

− bt−
j

a

}

+ β
{

at+
j

b

}

+ w
{

rt+
rj

ab

})

dt

=

ab−1
∑

j=0

∫ 1
ab

0
e
(

α{−bt}+ β{at} +w{rt}+ α
{

−
j

a

}

+ β
{j

b

}

+ w
{rj

ab

}

− α
)

dt

=

ab−1
∑

j=0

∫ 1
ab

0
e
(

(−αb+ βa+ rw)t+ α
{

−
j

a

}

+ β
{j

b

}

+ w
{rj

ab

})

dt

=





e
(

− α
a + β

b + rw
ab

)

− 1

2πi
(

− α
a + β

b + rw
ab

)





∗

·
1

ab

ab−1
∑

j=0

e
(

α
{

−
j

a

}

+ β
{j

b

}

+ w
{rj

ab

})

.

21We can assume that r > 0 (this follows by the fact that w ∈ Z); the case where a, b have different
signs is very similar and gives the same result modulo a nonzero constant.
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As we saw in Proposition 4.2, for all 0 ≤ j ≤ ab − 1, there exist unique 0 ≤ m ≤ a − 1,
0 ≤ n ≤ b− 1, so that

({

−
j

a

}

,
{j

b

})

=
({

−
m

a

}

,
{n

b

})

.

Hence, j is the unique integer in [0, ab − 1] such that j ≡ m mod a and j ≡ n mod b,
and so

j ≡ mbb∗ + naa∗ mod ab,

where a∗ is the unique element in [1, b− 1] such that aa∗ ≡ 1 mod b, and b∗ is the unique
element in [1, a− 1] such that bb∗ ≡ 1 mod a. We have that

{rj

ab

}

=
{r(mbb∗ + naa∗)

ab

}

,

so

1

ab

ab−1
∑

j=0

e
(

α
{

−
j

a

}

+ β
{j

b

}

+ w
{rj

ab

})

=
1

ab

a−1
∑

m=0

b−1
∑

n=0

e
(

α
{

−
m

a

}

+ β
{n

b

}

+ w
{r(mbb∗ + naa∗)

ab

})

=
1

ab

a−1
∑

m=0

b−1
∑

n=0

e
(

m
(

−
α

a
+

rwb∗

a

)

+ n
(β

b
+

rwa∗

b

)

− α
)

= e(−α)





e
(

− α+ rwb∗
)

− 1

a
(

e
(

− α
a + rwb∗

a

)

− 1
)





∗

·





e
(

β + rwa∗
)

− 1

b
(

e
(

β
b + rwa∗

b

)

− 1
)





∗

.

Putting everything together, we have that
∫

Y
e
(

αx+ βy + wz
)

dmY (x, y, z) 6= 0 if, and only if,

−
α

a
+

β

b
+

rw

ab
/∈ Z∗,−

α

a
+

rwb∗

a
/∈ (Z/a)\Z,

β

b
+

rwa∗

b
/∈ (Z/b)\Z,

as was to be shown. �

5. Estimating averages of exponential sums

5.1. Properties of polynomial orbits. For a fixed triple of real polynomials (p1, p2, p3),
with p1(0) = p2(0) = p3(0) = 0, we define a subtorus Y = Y (p1, p2, p3), so that the
sequence

(

{p1(W !n)}, {p2(W !n)}, {p3(W !n)}
)

n
is equidistributed on Y for large enough

W (see the definition before Proposition 2.1).
For such a triple of polynomials, let

K(p1, p2, p3) :=
{

(k1, k2, k3) ∈ Z3 : k1p1 + k2p2 + k3p3 ∈ Q[x]
}

,

and

Y (p1, p2, p3) :=
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, k1x+ k2y + k3z = 0,

(k1, k2, k3) ∈ K(p1, p2, p3)
}

.
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We remark that, for all W ∈ N, we have K(p1(W ·), p2(W ·), p3(W ·)) = K(p1, p2, p3) and
Y (p1(W ·), p2(W ·), p3(W ·)) = Y (p1, p2, p3).

We have the following equidistribution property.

Lemma 5.1. Let p1, p2, p3 ∈ R[x] be polynomials with p1(0) = p2(0) = p3(0) = 0. If
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3), then it is also equidistributed on

Y (p1, p2, p3).

Proof. Suppose that this is not the case. Note that Y (p1, p2, p3) is a subtorus of T3.
By Proposition 2.1, there exists (k1, k2, k3) ∈ Z3 which does not belong to the Q-span of
K(p1, p2, p3) such that k1p1(n)+k2p2(n)+k3p3(n) ∈ Z for all n ∈ Z. However, this implies
that (k1, k2, k3) ∈ K(p1, p2, p3), a contradiction by definition. Hence

(

{p1(n)}, {p2(n)},

{p3(n)}
)

n
is equidistributed on Y (p1, p2, p3). �

Remark 5.2. A rather strong restriction in Lemma 5.1 is that it is only applicable when
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3). In general,

(

{p1(n)}, {p2(n)},

{p3(n)}
)

n
takes values on finitely many shifted copies of Y (p1, p2, p3). For example, if

p1(n) = −αn, p2(n) = (α + 1/2)n and p3(n) = βn for some α, β ∈ R with α, β, 1 being
Q-independent, then

Y (p1, p2, p3) :=
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, x+ y = 0
}

.

However,
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
does not lie in Y (p1, p2, p3), but in Y (p1, p2, p3) ∪

(Y (p1, p2, p3) + (0, 1/2, 0) mod Z3).

To ensure that we can use Lemma 5.1 for our purposes, we need another result (see
Lemma 5.3 below). To state it, we need the following notation.

Let K0 be a basis of K(p1, p2, p3). For each (k1, k2, k3) ∈ K0, suppose that

k1p1 + k2p2 + k3p3 = g

for some polynomial g in Q[x]. If Q(k1, k2, k3) denotes the smallest natural number such
that g(Q(k1, k2, k3)!n)/gcd(k1, k2, k3) is integer-valued, we also let

(10) W0(p1, p2, p3) := min
K0 basis of
K(p1,p2,p3)

max
(k1,k2,k3)∈K0

Q(k1, k2, k3).

Lemma 5.3. Let p1, p2, p3 ∈ R[x] be polynomials with p1(0) = p2(0) = p3(0) = 0. If
W ≥ W0(p1, p2, p3), where W0 is given in (10), then the sequence

(

{p1(W !n)}, {p2(W !n)},

{p3(W !n)}
)

n
takes values in Y (p1, p2, p3).

Proof. Let K0 be a basis of K(p1, p2, p3) and fix (k1, k2, k3) ∈ K0. Then k1p1 + k2p2 +
k3p3 = g ∈ Q[x]. For convenience denote Q := Q(k1, k2, k3). Let a1, a2, a3 ∈ Z be such

that k1a1 + k2a2 + k3a3 = gcd(k1, k2, k3). Then {pi(Q!n)} =
{

pi(Q!n)− aig(Q!n)
gcd(k1,k2,k3)

}

for

1 ≤ i ≤ 3. Moreover,

3
∑

i=1

ki

(

pi(Q!n)−
aig(Q!n)

gcd(k1, k2, k3)

)

= g(Q!n)− g(Q!n) = 0.

So,
(

{p1(Q!n)}, {p2(Q!n)}, {p3(Q!n)}
)

belongs to Y (p1, p2, p3). �
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As it was mentioned in previous sections, it is important for our study to consider the
case of two rational polynomials where one is, or is not, a multiple of the other. In the
latter case, we have the following helpful lemma.

Lemma 5.4. Let f, g ∈ Q[x], f(0) = g(0) = 0, g 6≡ 0, and suppose that f is not a multiple
of g. If af + bg ∈ Q[x] for some a, b ∈ R, then we must have that a, b ∈ Q.

Proof. Suppose that f(n) =
∑K

i=1 fin
i and g(n) =

∑K
i=1 gin

i, for some K ∈ N and fi, gi ∈
Q. Then afi + bgi ∈ Q for all 1 ≤ i ≤ K. If b /∈ Q, then, since gi′ 6= 0 for some 1 ≤ i′ ≤ K
and fi′ , gi′ ∈ Q, we must have that a /∈ Q. Since a, b /∈ Q and afi + bgi ∈ Q for all
1 ≤ i ≤ K, we must also have that figj − fjgi = 0 for all 1 ≤ i, j ≤ K, which implies that
f is a multiple of g, a contradiction. Hence, b ∈ Q, which in turn implies that af ∈ Q[x],
so a ∈ Q too (since f , being not a multiple of g, is not constant zero). �

5.2. Characterizing when an exponential sum is zero. The purpose of this subsec-
tion is to study the average

(11) lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(n)]
)

,

where t1, t2 ∈ R. For convenience denote by p3 := t1p1 + t2p2. For two special types of
polynomial sequences (p1, p2, p3), we will compute the subtorus Y (p1, p2, p3), and partially
characterize when (11) is equal to 0.

The first type of (p1, p2, p3) we are interested in is given in the following proposition.

Proposition 5.5. Let f, g ∈ Q[x], f(0) = g(0) = 0, g 6≡ 0, f is not a multiple of g,
c ∈ R\Q, u1, u2 ∈ Z∗ with gcd(u1, u2) = 1, and d ∈ Q∗. Let

p1 = u1(f + cg), p2 = u2(f + (c+ d)g),

t1, t2 ∈ (R\Q) ∪ Z, not both in Z, and p3 = t1p1 + t2p2. We have:

(i) If t1u1 + t2u2 /∈ Q, then

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = 0
}

,

and (11) is zero if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3);

(ii) If t1u1 + t2u2 ∈ Z, and t2, c, 1 are Q-independent, then

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = 0
}

,

and (11) is zero if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3);

(iii) If t1u1 + t2u2 ∈ Z, and t2 = ac+ b for some a, b ∈ Q, then

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = au2dx− u1z = 0
}

.

Moreover, if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3) and au2d ∈ Z,

then (11) is nonzero if, and only if, ad
u1

/∈ Z∗.

Remark 5.6. As the corresponding ti’s will be taken in S(T ), for a totally ergodic trans-
formation, (i), (ii) and (iii) cover all possible cases since S(T ) ⊆ (R\Q) ∪ Z.

Notice that in case (iii), even if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3),

we were only able to provide an estimate for (11) when au2d ∈ Z. However, this is good
enough for our purposes.
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Proof of Proposition 5.5. For convenience, we denote by

K := K(p1, p2, p3), and Y := Y (p1, p2, p3).

Note that (11) becomes

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(n)]
)

= lim
N→∞

1

N

N
∑

n=1

e
({

2
∑

i=1

tipi(n)
}

−
2

∑

i=1

ti{pi(n)}
)

= lim
N→∞

1

N

N
∑

n=1

e
(

−t1{p1(n)} − t2{p2(n)}+ {p3(n)}
)

.

If
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y , then by Lemma 5.1, we have that

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(n)]
)

=

∫

Y
e
(

− t1x− t2y + z
)

dµY (x, y, z).(12)

In order to analyze the description of Y , we need to compute K. Recall that for
(k1, k2, k3) ∈ Q3, we have that (k1, k2, k3) ∈ K if

k1p1 + k2p2 + k3p3 =
(

(k1u1 + k2u2 + k3(t1u1 + t2u2))c+ k3t2u2d+ k2u2d
)

g

+
(

k1u1 + k2u2 + k3(t1u1 + t2u2)
)

f ∈ Q[n].
(13)

Since f is not a multiple of g, then by Lemma 5.4, (13) holds if, and only if,

(14) k3(t1u1 + t2u2), (k1u1 + k2u2 + k3(t1u1 + t2u2))c+ k3t2u2d ∈ Q.

We first prove part (i). If t1u1 + t2u2 /∈ Q, then (14) holds if, and only if, k3 =
k1u1 + k2u2 = 0. In this case, K is generated by the vector (u2,−u1, 0). Therefore,

(15) Y =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = 0
}

.

Then (12) is 0 since
∫ 1
0 e(z) dz = 0. This concludes the first part.

For part (ii), if t1u1 + t2u2 ∈ Z, then we may replace ti by ti +mi for some integer mi

(notice that this does not change the sum or the conditions in parts (ii) or (iii)). Since
gcd(u1, u2) = 1, we may assume that t1u1 + t2u2 = 0. (Indeed, if t1u1 + t2u2 = k,
since gcd(u1, u2) = 1, by the Euclidean algorithm, there are integers m1,m2 such that
m1u1 +m2u2 = 1, so, km1u1 + km2u2 = k. Hence (t1 − km1)u1 + (t2 − km2)u2 = 0.) So,
(14) becomes

(16) (k1u1 + k2u2)c+ k3t2u2d ∈ Q.

Suppose that t2, c, 1 are Q-independent. Since u2d 6= 0, (16) holds if, and only if,
k3 = k1u1 + k2u2 = 0. Again in this case, K is generated by the vector (u2,−u1, 0). As
before, Y is given by (15), and so (12) is equal to 0. This concludes part (ii).

For part (iii), suppose that t2 = ac+ b, for some a, b ∈ Q with au2d ∈ Z. If t2 ∈ Z, then,
since t1u1 + t2u2 = 0 and t1 ∈ (R\Q)∪Z, we have to have t1 ∈ Z, a contradiction. Hence,
we have that t2 /∈ Q (which also implies that t1 /∈ Q). Then, (16) is equivalent to

k1u1 + k2u2 + k3au2d = 0.
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Therefore, K is generated by the vectors (u2,−u1, 0) and (au2d, 0,−u1). So,

Y =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = au2dx− u1z = 0
}

.

Since au2d ∈ Z∗, setting a = u2, b = −u1, r = au2d, α = −t1, β = −t2 and w = 1 in
Proposition 4.3, we have that (12) is nonzero if, and only if, the following hold:

• ad
u1

/∈ Z∗;

• t1
u2

+ (−u1)
∗ad /∈ (Z/u2)\Z;

• t2
u1

−
u∗

2au2d
u1

/∈ (Z/u1)\Z.

Since t1, t2 /∈ Q, the last two conditions are always true. So, the average is nonzero if,
and only if, ad

u1
/∈ Z∗. This proves part (iii) and completes the proof. �

The second type of (p1, p2, p3) we are interested in is given in the following proposition.

Proposition 5.7. Let g ∈ Q[x], g(0) = 0, g 6≡ 0, c ∈ R\Q, u1, u2 ∈ Z∗ with gcd(u1, u2) =
1, and d ∈ Q∗. Let

p1 = u1cg, p2 = u2(c+ d)g,

t1, t2 ∈ R, not both in Z, and p3 = t1p1 + t2p2. We have:

(i) If t1u1c+ t2u2(c+ d), c and 1 are Q-independent, then

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u2x− u1y = 0
}

.

Moreover, if ({p1(n)}, {p2(n)}, {p3(n)})n takes values in Y (p1, p2, p3), then (11) is
zero;

(ii) If t1u1c+ t2u2(c+ d) = sc+ t for some s, t ∈ Q, then

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u1y − u2x = u1z − sx = 0
}

.

Moreover, if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y (p1, p2, p3) and s ∈ Z, then

(11) is nonzero if, and only if, the following hold:

• t−t2u2d
u1u2c

/∈ Z∗;

• t1
u2

+ s(−u1)∗

u2
/∈ (Z/u2)\Z;

• t2
u1

−
su∗

2
u1

/∈ (Z/u1)\Z.

Remark 5.8. As with Proposition 5.5 (iii), in case (ii) of the previous statement, we were
only able to provide an estimate for (11) for the special case where s ∈ Z, which suffices
for our purposes.

Proof of Proposition 5.7. For convenience, we denote by

K := K(p1, p2, p3), and Y := Y (p1, p2, p3).

Similar to the proof of Proposition 5.5, if
(

{p1(n)}, {p2(n)}, {p3(n)}
)

n
takes values in Y ,

then

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(n)]
)

=

∫

Y
e
(

− t1x− t2y + z
)

dµY (x, y, z).(17)

In order to analyze the description of Y , we need to compute K. Note that for
(k1, k2, k3) ∈ Q3, we have (k1, k2, k3) ∈ K if, and only if,

(k1u1 + k2u2)c+ k3(t1u1c+ t2u2(c+ d)) ∈ Q.(18)



22 ANDREAS KOUTSOGIANNIS AND WENBO SUN

We first prove part (i). Since t1u1c + t2u2(c + d), c and 1 are Q-independent, we have
that (18) holds if, and only if,

k3 = k1u1 + k2u2 = 0.

Therefore, K is generated by the vector (u2,−u1, 0). So, Y is the same as case (i) of
Proposition 5.5, and (11) equals 0. This concludes part (i).

We next prove part (ii). Since c is irrational, (18) holds if, and only if,

k1u1 + k2u2 + k3s = 0.

Therefore, K is generated by the vectors (u2,−u1, 0) and (s, 0,−u1). So, we have that

Y (p1, p2, p3) =
{

({x}, {y}, {z}) : (x, y, z) ∈ R3, u1y − u2x = u1z − sx = 0
}

.

By Proposition 4.3 for a = −u2, b = u1, r = −s, α = −t1, β = −t2, and w = 1, (17) is
nonzero if, and only if, the following hold:

• t1
u2

+ t2
u1

− s
u1u2

= t−t2u2d
u1u2c

/∈ Z∗;

• t1
u2

+ s(−u1)∗

u2
/∈ (Z/u2)\Z;

• t2
u1

−
su∗

2
u1

/∈ (Z/u1)\Z.

This completes the proof of the statement. �

6. Characterizing total joint ergodicity for two terms

In this section, we prove our main result on polynomial iterates, i.e., Theorem B.

6.1. Type-B pairs. Our first step is to reduce the total joint ergodicity problem to the
case of some special pairs which are closely related to the pairs appearing in Theorem B
case (ii), which we refer as “Type-B”.

Definition. Let (X,B, µ, T ) be a system. We say that the pair (p1, p2) of real polynomials
is of Type-B for the system (X,B, µ, T ) if there exist f, g ∈ Q[x], f(0) = g(0) = 0, g 6≡ 0,
c ∈ S(T )\Z, u1, u2 ∈ Z∗ with gcd(u1, u2) = 1, and d ∈ Q∗, such that

p1 = u1(f + cg), p2 = u2(f + (c+ d)g).(19)

Proposition 6.1. Let (X,B, µ, T ) be a totally ergodic system. If p1, p2 are S(T )\Z∗-
dependent with p1(0) = p2(0) = 0, then either

(i) there exists W0 ≡ W0(p1, p2) ∈ N such that ([p1(n)])n, ([p2(n)])n are not W !-jointly
ergodic for (X,B, µ, T ) for all W ≥ W0; or

(ii) (p1, p2) is of Type-B for (X,B, µ, T ).

Proof. If p1 ∈ Q[x] and p2 /∈ Q[x], in which case p2 is Q-independent (the case p2 ∈
Q[x] and p1 /∈ Q[x] is analogous), or p1, p2 ∈ Q[x], or p1, p2 /∈ Q[x] and p1, p2 are Q-
independent, then, by Proposition 3.2, there exists W0 ∈ N depending only on p1, p2 such
that ([p1(n)])n, ([p2(n)])n are not W !-jointly ergodic for (X,B, µ, T ) for all W ≥ W0.

The remaining case is when p1, p2 /∈ Q[x] and p1, p2 are Q-dependent. Then, we have

c1p1 + c2p2 = q, d1p1 + d2p2 = q′(20)
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for some q, q′ ∈ Q[x], c1, c2 ∈ S(T )\Z∗ not both 0, and d1, d2 ∈ Z∗ with gcd(d1, d2) =
1 (since p1, p2 /∈ Q[x]). We remark that d1, d2 and q′ are independent of S(T ). For

convenience we let r := det

[

c1 c2
d1 d2

]

.

There exists W0 ∈ N depending on p1, p2, such that for all W ≥ W0 and n ∈ N, q(W !n)
is an integer, and q′(W !n) is an integer which is divisible by d1d2.

22

To study the W !-joint ergodicity property, we have to consider the following average:

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ci[pi(W !n)]
)

,(21)

which equals to

lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

cipi(W !n)−
2

∑

i=1

ci{pi(W !n)}
)

= lim
N→∞

1

N

N
∑

n=1

e
(

−c1{p1(W !n)} − c2{p2(W !n)}
)

.

Since p1(W !·) /∈ Q[x], and d1p1(W !n) + d2p2(W !n) = q′(W !n) ∈ d1d2Z, we have that
the last line of the previous relation is equal to

(22) lim
N→∞

1

N

N
∑

n=1

e
(

−c1{p1(W !n)} − c2

{

−
d1
d2

p1(W !n)
})

.

For every n, we have that
(

{p1(W !n)},
{

− d1
d2
p1(W !n)

})

takes value in the subtorus

Y :=
{

({x}, {y}) : (x, y) ∈ R2, d1x+ d2y = 0
}

.

Note that p1(0) = p2(0) = 0. If
(

{p1(W !n)},
{

− d1
d2
p1(W !n)

})

n
is not equidistributed on

Y then, by Proposition 2.1, there exist (k1, k2) ∈ Z2\spanQ{(d1, d2)} such that

k1p1(W !n) + k2

(

−
d1
d2

p1(W !n)
)

∈ Z.

Since p1(W !n) /∈ Z for some n, we have that k1d2 = k2d1, a contradiction to the assumption

that (k1, k2) /∈ spanQ{(d1, d2)}. So
(

{p1(W !n)},
{

− d1
d2
p1(W !n)

})

n
is equidistributed on

Y .
Let F : T2 → C be the function F (x, y) = e

(

−c1x−c2y
)

. Then F is Riemann integrable
and (22) is equal to

(23)

∫

Y
e
(

− c1x− c2y
)

dmY (x, y).

Since at least one of the c1, c2 is irrational, we have that either both are irrational, or
one of them is irrational and the other is 0. In both cases, By Proposition 4.2, (23), and

22This is another reason why we assume that p1, p2 take the value 0 at 0. If some of q, q′ was constant,
then the last claim would not be true in general.
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hence (21) too, is nonzero if r /∈ Q∗, in which case ([p1(n)])n, ([p2(n)])n are not W !-jointly
ergodic for (X,B, µ, T ).

The remaining case is when (20) holds and r ∈ Q∗. Note that c1, c2 /∈ Q.

Let g := q′

d1r
and f := − q

r . By (20),

p1 =

det

[

q c2
q′ d2

]

r
=

det

[

q (c1d2 − r)/d1
q′ d2

]

r
= −d2

(

f +
(

c1 −
r

d2

)

g

)

,

and

p2 =

det

[

c1 q
d1 q′

]

r
= d1(f + c1g).

To complete the proof that (p1, p2) is of Type-B for (X,B, µ, T ), it suffices to check that
q′, and thus g, is not constant (hence 0, since p1(0) = p2(0) = 0). Suppose on the contrary

that q′ ≡ 0. Then, by (20), we have p1 = −d2
d1
p2. Again by (20), q = c1p1 + c2p2 = − r

d1
p2,

which is impossible since q ∈ Q[x] and p2 /∈ Q[x]. �

6.2. Proof of Theorem B. In this subsection, we prove Theorem B. Rescaling relevant
coefficients and polynomials if necessary, it is not hard to see that condition (ii) in Theo-
rem B is equivalent to the following:

(ii)′ p1 = u1(f + cg), p2 = u2(f + (c + d)g) for some f, g ∈ Q[x], where f is not a
multiple of g, f(0) = g(0) = 0, g 6≡ 0, c ∈ R\Q, u1, u2 ∈ Z with u1, u2 = ±1, and
d ∈ Q∗ such that dg is an integer polynomial.

In the rest of this section, we will work with condition (ii)′ instead of (ii) as it is notation-
wise closer to the one of Type-B pairs.

Since Theorem B deals with total joint ergodicity, analogously to (11) and (21) that we
introduced in Subsections 5.2 and 6.1 respectively, for W ∈ N and r ∈ Z, we will deal with

(24) lim
N→∞

1

N

N
∑

n=1

e
(

2
∑

i=1

ti[pi(Wn+ r)]
)

.

6.2.1. Sufficiency. We first prove the sufficiency part of Theorem B. Assume that both of
its conditions fail. We start by reducing the problem to the Type-B case. By the failure
of condition (i), p1, p2 are R\Q∗-dependent, so c1p1 + c2p2 ∈ Q[x] for some c1, c2 ∈ R\Q∗,
not both equal to 0.

By Lemma 3.5, there exists D ∈ N and a totally ergodic system (X,B, µ, T ) such that
Dc1,Dc2 ∈ S(T ). Since Dc1,Dc2 /∈ Q∗, we have that p1, p2 are S(T )\Q∗-dependent.
By Proposition 6.1, either ([p1(n)])n, ([p2(n)])n are not W !-jointly ergodic for (X,B, µ, T )
for some sufficiently large W depending on p1, p2, and thus ([p1(n)])n, ([p2(n)])n are not
totally jointly ergodic for (X,B, µ, T ), or there exist f, g ∈ Q[x], f(0) = g(0) = 0, g 6≡ 0,
c ∈ S(T )\Z, u1, u2 ∈ Z∗ with gcd(u1, u2) = 1, and d ∈ Q∗ such that

p1 = u1(f + cg), p2 = u2(f + (c+ d)g).

Note that in particular, c ∈ R\Q.
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We will construct another totally ergodic system (X ′,B′, µ′, T ′) for which ([p1(n)])n,
([p2(n)])n are not totally jointly ergodic. We have the following cases.

Case 1. f is a multiple of g. Here, we can rewrite the polynomials as

p1 = u1c
′g′, p2 = u2(c

′ + d′)g′

for some g′ ∈ Q[x], g′(0) = 0, g′ 6≡ 0, c′ ∈ R\Q, d′ ∈ Q∗. Let t1, t2 be irrational numbers
such that the following conditions are satisfied:

• t1u1c
′ + t2u2(c

′ + d′) = c′ = sc′ + t (for s = 1 and t = 0);

• t2d′

u1c′
/∈ Z;

• t1, t2, c
′ and 1 are Q-independent.23

By Lemma 3.5, there exists a totally ergodic system (X ′,B′, µ′, T ′) such that S(T ′) =
spanZ{t1, t2, c

′, 1}. Then, (p1, p2) is of Type-B for (X ′,B′, µ′, T ′). Since s = 1 ∈ Z and
t−t2u2d′

u1u2c′
= − t2d′

u1c′
/∈ Z, we have, by Proposition 5.7 (ii) and Lemma 5.3, that there exists

W0 depending only on p1, p2, t1 and t2 such that ([p1(n)])n, ([p2(n)])n are not W !-jointly
ergodic for (X ′,B′, µ′, T ′) for all W ≥ W0. So ([p1(n)])n, ([p2(n)])n are not totally jointly
ergodic for (X ′,B′, µ′, T ′).

Case 2. f is not a multiple of g. Here we have two further sub-cases.

Case 2.1. |u1u2| > 1.
Since |u1u2| > 1, there exists a ∈ Q such that ad

u1
/∈ Z∗ and au2d ∈ Z (e.g., one can

simply take a = 1
u2d

). By Lemma 3.5, there exists a totally ergodic system (X ′,B′, µ′, T ′)

such that S(T ′) = spanZ

{

c′ := c
M , 1

}

, where M ∈ N will be chosen later. We may then

rewrite

p1 = u1(f + c′g′), p2 = u2(f + (c′ + d′)g′),

where g′ = Mg and d′ = d
M . Let a′ = aM , t1 = −u2

u1
a′c′ = −aMu2

u1
c′ and t2 = a′c′ = aMc′.

If we pick M so that aM
u1

∈ Z, then t1, t2 ∈ S(T ′). Note that t1u1 + t2u2 = 0. On

the other hand, note that a′d′

u1
= ad

u1
/∈ Z∗ and a′u2d

′ = au2d ∈ Z. So, by Proposi-

tion 5.5 (iii) and Lemma 5.3, there exists W0 depending only on p1, p2, t1 and t2 such that
([p1(n)])n, ([p2(n)])n are not W !-jointly ergodic for (X ′,B′, µ′, T ′) for all W ≥ W0. So
([p1(n)])n, ([p2(n)])n are not totally jointly ergodic for (X ′,B′, µ′, T ′).

Case 2.2. |u1u2| = 1.
In this case, we may assume without loss of generality that u1 = 1 and u2 = ±1. Since

condition (ii)′ fails, we have that dg(r) /∈ Z for some r ∈ Z. Let W ∈ N be such that
f(Wn + r) − f(r), dg(Wn + r) − dg(r) ∈ Z for all n ∈ N. By Lemma 3.5, there exists a
totally ergodic system (X ′,B′, µ′, T ′) such that c/d ∈ S(T ′).

23This can be easily seen as follows: We want to pick t2 /∈ Q such that t1u1c
′ + t2u2(c

′ + d′) = c′,
d′t2 6= kc′u1 for all k ∈ Z, and s1t1 + s2t2 + s3c

′ 6= s0 for all s0, s1, s2, s3 ∈ Q not all 0. This is equivalent
in picking t2 irrational with (s2u1c

′ − s1u2(c
′ + d′))t2 6= s0u1c

′ − s1c
′ − s3u1(c

′)2 for all (s0, s1, s2, s3) ∈
Q4\{(0, 0, 0, 0)}, and d′t2 6= kc′u1 for all k ∈ Z. It is obvious that there are uncountably many such choices.
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We first consider the case u2 = 1. Let t2 = −t1 = c/d. Then, (24) is equal to

lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
(

−t1{f(m) + cg(m)} − t2{f(m) + (c+ d)g(m)}

+ {(t1 + t2)(f(m) + cg(m)) + t2dg(m)}
)

= lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
( c

d
({f(r) + cg(m)} − {f(r) + dg(r) + cg(m)}) + {cg(m)}

)

.

(25)

By Weyl’s criterion, we have that ({cg(Wn + r)})n is equidistributed on T.
If {f(r)}+ {dg(r)} < 1, then (25) is equal to

lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
( c

d
(1{cg(m)}∈(1−{f(r)}−{dg(r)},1−{f(r)}) − {dg(r)}) + {cg(m)}

)

=

∫ 1

0
e
( c

d
(1x∈(1−{f(r)}−{dg(r)},1−{f(r)}) − {dg(r)}) + x

)

dx

=

∫ 1−{f(r)}

1−{f(r)}−{dg(r)}
e
( c

d
(1− {dg(r)}) + x

)

dx+

∫ 2−{f(r)}−{dg(r)}

1−{f(r)}
e
(

−
c

d
{dg(r)} + x

)

dx

=
e( cd )− 1

2πi
e
(

− {f(r)} −
c

d
{dg(r)}

)

(

1− e(−{dg(r)})
)

.

If {f(r)}+ {dg(r)} ≥ 1, then (25) is equal to

lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
( c

d
(1{cg(m)}/∈(1−{f(r)},2−{f(r)}−{dg(r)}) − {dg(r)}) + {cg(m)}

)

=

∫ 1

0
e
( c

d
(1x/∈(1−{f(r)},2−{f(r)}−{dg(r)}) − {dg(r)}) + x

)

dx

=
(

∫ 1−{f(r)}

0
+

∫ 1

2−{f(r)}−{dg(r)}

)

e
( c

d
(1− {dg(r)}) + x

)

dx

+

∫ 2−{f(r)}−{dg(r)}

1−{f(r)}
e
(

−
c

d
{dg(r)} + x

)

dx

=

∫ 2−{f(r)}

2−{f(r)}−{dg(r)}
e
( c

d
(1− {dg(r)}) + x

)

dx+

∫ 2−{f(r)}−{dg(r)}

1−{f(r)}
e
(

−
c

d
{dg(r)} + x

)

dx

=
e( cd )− 1

2πi
e
(

− {f(r)} −
c

d
{dg(r)}

)

(

1− e(−{dg(r)})
)

.

In both cases above, since dg(r) /∈ Z, the averages are nonzero. So ([p1(n)])n, ([p2(n)])n
are not totally jointly ergodic for (X ′,B′, µ′, T ′).

Finally, we consider the case u2 = −1. Let t2 = t1 = c/d. Using the fact that [−x] + [x] =
−1 for all x ∈ R\Z, we may invoke the previous computation to conclude that (24) is equal
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to
−e( cd )

(

e( cd )− 1
)

2πi
e
(

− {f(r)} −
c

d
{dg(r)}

)

(

1− e(−{dg(r)})
)

,

i.e., it differs from the value of the first case by a the factor −e( cd). So, we conclude that
([p1(n)])n, ([p2(n)])n are not totally jointly ergodic for (X ′,B′, µ′, T ′).

6.2.2. Necessity. To prove the necessity part of Theorem B, we deal with the following two
cases.

Condition (i) holds. Since p1, p2 are R\Q∗-independent, then, for any totally ergodic
system (X,B, µ, T ), p1, p2 are S(T )\Z∗-independent and the result follows from Proposi-
tion 3.1.

Condition (ii)′ holds. Assume without loss of generality that u1 = 1. It suffices to show
that for any totally ergodic system (X,B, µ, T ), t1, t2 ∈ S(T ) not both in Z, W ∈ N, and
r ∈ Z, we have that (24) equals 0.

We first assume that u2 = 1. Then, (24) equals to

lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
(

−t1{f(m) + cg(m)} − t2{f(m) + (c+ d)g(m)}

+ {(t1 + t2)(f(m) + cg(m)) + t2dg(m)}
)

= lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
(

−(t1 + t2){f(m) + cg(m)} + {(t1 + t2)(f(m) + cg(m)) + t2dg(m)}
)

.

(26)

We first consider the case t1+t2 ∈ Q. Since X is totally ergodic, we have that t1+t2 ∈ Z.
Since (24) remains unchanged if we replace t1 by t1+k for any k ∈ Z, we may then assume
without loss of generality that t1 + t2 = 0. Then, (26) equals to

lim
N→∞

1

N

∑

m=Wn+r,
1≤n≤N

e
(

t2dg(m)
)

,

which by Weyl’s criterion converges to 0 if t2 /∈ Q. Actually, the latter holds since if t2 ∈ Q,
then t2 ∈ Z by total ergodicity. So, we also have t1 ∈ Z, a contradiction.

We next consider the case t1 + t2 /∈ Q. Suppose that

(a+ b(t1+ t2))f +((a+ b(t1+ t2))c+ bt2d)g = a(f + cg)+ b((t1+ t2)(f + cg)+ t2dg) ∈ Q[x]

for some a, b ∈ Q. By Lemma 5.4, which can be used as f is not a multiple of g, we have
that a + b(t1 + t2) ∈ Q. This implies that b = 0, which in turn forces a = 0. Therefore,
(

{(f + cg)(Wn + r)}, {((t1 + t2)(f + cg) + t2dg)(Wn + r)}
)

n
is equidistributed on T2 by

Weyl’s criterion. So, (26) equals to
∫

T2

e
(

− (t1 + t2)x+ y
)

dxdy = 0,

as was to be shown.



28 ANDREAS KOUTSOGIANNIS AND WENBO SUN

In the case where u2 = −1, notice that for all t1, t2 ∈ R and n ∈ N, we have that

e(t1[p1(n)] + t2[p2(n)]) = e(t1[p1(n)]− t2[−p2(n)]) · e(−t2).

We may use the previous case to conclude the proof, i.e., for any totally ergodic system
(X,B, µ, T ), t1, t2 ∈ S(T ) not both in Z, and W ∈ N, r ∈ Z, we have that (24) equals 0.

7. Appendix: Two interesting examples

In this appendix, we provide two examples illustrating how minor changes in the poly-
nomial iterates can essentially affect their joint ergodicity properties.

The first one shows that, for some a ∈ R, ([p1(n)])n, ([p2(n)])n can behave differently
than ([p1(n)])n, ([p2(n) + a])n.

Proposition 7.1. There exist p1, p2 ∈ R[x] and a ∈ R such that ([p1(n)])n, ([p2(n)])n
are totally jointly ergodic for all totally ergodic systems, and there exists a totally ergodic
system (X,B, µ, T ), such that for all W ∈ N and r ∈ Z, ([p1(Wn+r)])n, ([p2(Wn+r)+a])n
are not jointly ergodic for (X,B, µ, T ).

Proof. Let W ∈ N, r ∈ Z, c ∈ R\Q, and

p1(n) = n2 + cn, p2(n) = n2 + (c+ 1)n.

By Theorem B, ([p1(n)])n, ([p2(n)])n are totally jointly ergodic for all totally ergodic sys-
tems.

On the other hand, let (X,B, µ, T ) = (T,B,m, T ), where m is the Haar measure on T

and Tx = x+ c mod 1 for all x ∈ T. Then

lim
N→∞

1

N

N
∑

n=1

e
(

−c[p1(Wn+ r)] + c
[

p2(Wn+ r) +
1

4

])

= lim
N→∞

1

N

N
∑

n=1

e
( c

4
+ (c+ 1){c(Wn + r)} − c

{

c(Wn+ r) +
1

4

})

= lim
N→∞

1

N

N
∑

n=1

(

1
{c(Wn+r)}∈

[

0, 3
4

)e
(

{c(Wn+ r)}
)

+ 1
{c(Wn+r)}∈

[

3
4
,1
)e
(

c+ {c(Wn+ r)}
)

)

.

(27)

Since
(

c(Wn+ r)
)

n
is equidistributed on T by Weyl’s criterion, we have that (27) is equal

to
∫ 3

4

0
e(t) dt+

∫ 1

3
4

e(c + t) dt =
1 + i

2πi
(e(c) − 1) 6= 0.

So
(

[p1(Wn+ r)]
)

n
,
(

[p2(Wn+ r) + 1
4 ]
)

n
are not jointly ergodic for (X,B, µ, T ). �

The second example provides two polynomial sequences which, for all W ≥ 2, are W !-
jointly ergodic for every totally ergodic system, but are not jointly ergodic for some totally
ergodic system.
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Proposition 7.2. There exist p1, p2 ∈ R[x] such that ([p1(2n)])n, ([p2(2n)])n are totally
jointly ergodic for all totally ergodic systems, and there exists a totally ergodic system
(X,B, µ, T ), such that ([p1(n)])n, ([p2(n)])n are not jointly ergodic for (X,B, µ, T ).

Proof. Let c ∈ R\Q, and

p1(n) = n3 +
cn2

4
, p2(n) = n3 +

(c+ 1)n2

4
.

By Theorem B, ([p1(2n)])n, ([p2(2n)])n are totally jointly ergodic for all totally ergodic
systems.

Let (X,B, µ, T ) = (T,B,m, T ), where m is the Haar measure on T and Tx = x + c
mod 1 for all x ∈ T. We will show that ([p1(n)])n, ([p2(n)])n are not jointly ergodic for
(X,B, µ, T ). Since ([p1(2n)])n, ([p2(2n)])n are jointly ergodic for (X,B, µ, T ), it suffices to
show that ([p1(2n + 1)])n, ([p2(2n + 1)])n are not jointly ergodic for (X,B, µ, T ). To this
end, notice that

lim
N→∞

1

N

N
∑

n=1

e
(

−c[p1(2n + 1)] + c[p2(2n+ 1)]
)

= lim
N→∞

1

N

N
∑

n=1

e
(

(c+ 1)
{c(2n + 1)2

4

}

− c
{c(2n + 1)2

4
+

1

4

})

= lim
N→∞

1

N

N
∑

n=1



1{
c(2n+1)2

4

}

∈
[

0, 3
4

)e
({c(2n + 1)2

4

})

+1{
c(2n+1)2

4

}

∈
[

3
4
,1
)e
(

c+
{c(2n + 1)2

4

})



 e
(

−
c

4

)

.

(28)

Since c /∈ Q,
(

c(2n+1)2

4

)

n
is equidistributed on T by Weyl’s criterion. So, (28) is equal to

e
(

−
c

4

)(

∫ 3
4

0
e(t) dt +

∫ 1

3
4

e(c+ t) dt
)

=
1 + i

2πi
e
(

−
c

4

)

(e(c) − 1) 6= 0.

Thus ([p1(n)])n, ([p2(n)])n are not jointly ergodic for (X,B, µ, T ). �
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