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Abstract

Starting with a combinatorial partition theorem for words over an infinite alphabet
dominated by a fixed sequence, established recently by the authors, we prove recur-
rence results for topological dynamical systems indexed by such words. In this way
we extend the classical theory developed by Furstenberg and Weiss of dynamical
systems indexed by the natural numbers to systems indexed by words. Moreover,
applying this theory to topological systems indexed by semigroups that can be
represented as words we get analogous recurrence results for such systems.
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1 Introduction

Furstenberg in collaboration with Weiss and Katznelson in the 1970’s ([6], [7],
[8]) connected fundamental combinatorial results, such as the partition theo-
rems of van der Waerden ([10], 1927) and Hindman ([9], 1974), with topological
dynamics and particularly with phenomena of (multiple) recurrence for suit-
able sequences of continuous functions defined on a compact metric space into
itself.

The theorems of van der Waerden and Hindman were unified by a partition
theorem for words over a finite alphabet of Carlson ([3], 1988); recently Carl-
son’s theorem was essentially strengthened by the authors, in [4], [5], to a
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partition theorem (Theorem 2.2) for w-Z*-located words (i.e. words over an
infinite alphabet dominated by a fixed sequence).

Our starting point in this work is a topological formulation of the partition
theorem for w-Z*-located words (Theorem 3.1). Introducing the notion of a
dynamical system of continuous maps (homeomorphisms in the multiple case)
from a compact metric space into itself indexed by w-Z*-located words, we
apply this formulation to study (multiple) recurrence phenomena for these
topological systems (Theorems 3.6, 3.15), extending the earlier results of
Birkhoff ([1]) and Furstenberg-Weiss ([6], [8]).

By making use of the representation of rational and integer numbers as w-Z*-
located words (Example 2.1) established by Budak-Isik-Pym in [2], we obtain
recurrence results for dynamical systems indexed by rational numbers or by
the integers (Theorems 4.1, 4.2, 4.3, 4.4). Moreover, we point out the way
to obtain recurrence results for dynamical systems indexed by an arbitrary
semigroup (Theorems 4.5, 4.7).

We will use the following notation.

Notation 1.1 Let N = {1,2,...} be the set of natural numbers, Z. = {. .., —2,
—1,0,1,2,...} the set of integer numbers, Q = {™ : m € Z, n € N} the set
of rational numbers and Z— = {—n:n € N}, Z* = Z\ {0}, Q* = Q\ {0}.

2 A partition theorem for w-Z*-located words

In this section we will introduce the w-Z*-located words and we will state a
partition theorem for these words proved in [5].

An w-Z*-located word over the alphabet ¥ = {a,, : n € Z*} dominated
by k= (kn)nez+, where k, € N for every n € Z* and (ky)nen, (k—pn)nen are
increasing sequences, is a function w from a non-empty, finite subset F' of Z*
into the alphabet ¥ such that w(n) = z, € {aq,...,a,} for every n € FNN
and z, € {a_y,,...,a_1} for every n € F NZ". So, the set L(X,k) of all
(constant) w-Z*-located words over ¥ dominated by & is:

LK) ={w=24,...20, : 1 €Nny < ... <ny € Z and 2, e{ar,...,ap, }
if n; >0, zp, € {a, ,..., a1} if n; <0 for every 1 <i <[}

Analogously, the set of w-located words over the alphabet ¥ = {a,, : n € N}
dominated by the increasing sequence k = (ky)nen C N is

L(E,E):{w:zm...zm:leN,m<...<nl€NandzniE{al,...,akni}
for every 1 <i <}.



Example 2.1 We will give some examples of sets that can be represented as
w-Z*-located words.

(1) According to Budak-Isik-Pym in [2], every rational number q has a unique
expression in the form

q= Z q—s
s=1

where (qn)nezs € NU {0} with 0 < gy < s for every s > 0,0 < ¢, <r
for every r > 0 and q_s = q, = 0 for all but finite many r,s. Setting > =
{a, : n € Z*}, where a_,, = o, = n forn € N, and k= (kn)nez+, where
k_, =k, =mn forn €N, the function

1)

(2;1; +—§2qx—1y*%!

g Q= L(Z, k),

which sends q to the word w = ¢, ...q, € ZNL(E,/;), where {t1,...,t;} ={t €
Z* . q # 0}, is one-to-one and onto.

(2) According to [2], for a given increasing sequence (ky)neny € N with k, > 2,
every integer number z € 7 has a unique expression in the form

2= z(-1)""
s=1
where lo =1, ls = ki ... ks, for s € N and (z5)seny € NU {0} with 0 < z, < ks
for every s € N and z; = 0 for all but finite many s. Setting ¥ = {«,, : n € N},
where o, = n, and k = (kp)nen the function

g7 — L(Z, k),

which sends z to the word w = z, ... zs, € L(X, lg), where {sy,...,s} ={s €
N : z; # 0}, is one-to-one and onto.

(8) For a given natural number k > 1, every natural number n has a unique
expression in the form

o0
n= Z nekst
s=1

where (ng)seny € NU{0} with 0 < ng < k—1 and ng = 0 for all but finite many
s. Setting ¥ ={1,...,k — 1} and k = (kp)nen with k, = k — 1 the function

g N = L(Z, k),

which sends n to the word w = ny, ...ns, € L(X, k), where {s1,...,s} ={s €
N : ng # 0}, is one-to-one and onto.

Let ¥ = {a, : n € Z*} be an alphabet, k= (kn)neze € N be such that
(kn)nen and (k_,)nen are increasing sequences and v ¢ 3 be a variable.
The set of variable w-Z*-located words over ¥ dominated by k is:



E(E,E;v):{w:zm...zm leNnm <...<m€Z 2z, €{v,aq,...,
Oékni} if n; >0, 2, € {U,Oé_kni,...,a_l} if n; < 0 for all
1 <i <! and there exists 1 <i <[ with z,, = v}.

The set of variable w-located words over ¥ = {«,, : n € N} dominated by
the increasing sequence k = (k,)neny C N is:

L(E,E;v):{w:zm...znl:ZGN, n<...<m€eN, z, €{v,a,...,
Oék‘ni} for all 1 <4 <[ and there exists 1 <7 <[ with
Zn; = U}

We set L(X U {v}, k) = L(Z, k) U L(S, k;v) and L(S U {v}, k) = L(, k) U
L(Z, k).

For w = 2z, ...2, € L(XU {v}, k) the set dom(w) = {ny,...,m} is the

domain of w. Let dom™(w) = {n € dom(w) : n < 0} and dom™(w) = {n €
dom(w) : n > 0}. We define the set

Lo(, ki v) = {zn, - .. Zn, € L(3, kiv) : Zny, = U = Zn;, Ny € dom™ (w),
n; € dom™*(w)}.

FOT W = Zp, .. Znyy U = Uy, - - . U, € L(SU{0}, k) with dom(w) Ndom(u) = ()
we define the concatenating word:

WxU=Tq, ... %q,, e L( U {v}, k),

where {¢1 < ... < ¢} = dom(w) Udom(u), z; = z; if i € dom(w) and
x; = v; if i € dom(u).

-

The set L(X U {v}, k) can be endowed with the relations <g,, <g,:

w <g, u <= dom(u) = A; U Ay with Ay, Ay # () such that
max A; < mindom(w) < max dom(w) < min A,,

w <g, ¥ <= maxdom(w) < min dom(u).
We define the sets

EOO(E, E; v) = {W = (W) nen : Wy, € EO(E, E; v) and w,, <g, Wy for every
n € N},

L®(S, k;0) = {0 = (wp)nen : wn € L(S, k;v) and w,, <g, wyy1 for every
n € N}.

We will define now the notion of substitution for the variable w-Z*-located
words and respectively for the variable w-located words.



Let w = 2y, ...2%n, € Lo(%,k;v) with n, = mindom™(w) and —m,, =
max dom ™ (w) for n,, m,, € N. For every (p,q) € {1,...,kn, }x{1,... k_p, }U
{(v,v)} we set:

w(v,v) =w and wW(p,q) = Up, - .. Up,,

for every (p,q) € {1,...,kn,} X {1,...,k_p, }, where, for 1 <i <1, u,, = z,,
if z,, € X, uy, = o, if 2,, = v, n; >0 and u,, = a_, if 2,, = v, n; <O0.

Respectively, let w = 2, ... 2y, € L(3, k; v) with n,, = min dom(w) € N. For
every p € {1,...,k,, } U{v} we set:

w(v) = w and w(p) = Uy, - . . Up,,

for every p € {1,...,ky, }, where, for 1 < i <[, u,, = 2, if 2,, € &, up, =
if z,, = v.

We remark that for @ = (w,)nen € L®(Z, k;0) (resp. for @ = (wy)pen €
L®(2, k;v)) we have n < mindom™*(w,) and —n > maxdom™(w,) (resp.
n < mindom(w,)), for n € N. So, for n € N, the substituted word w,(p, q)
(resp. wy(p) ) has meaning for every (p,q) € N x N with p <k, and ¢ < k_,
(resp. for every p € N with p <k, ).

Fix a sequence @ = (wy )nen € L®(S, k;0) (resp. @ = (wy)nen € L2(2, k;v)).

An extracted w-Z*-located word (resp. extracted w-located word) of
is an w-Z*-located word z € L(X, k) (resp. z € L(3, k)) with

2= Wy, (P1,q1) * - - . % Why (Pr, @) (T€SP. 2 = Wy, (P1) * ... % Wy, (D)),

where A\ € N, ny < ... < ny € Nand (p;,q;) € {1,..., k., } x{1,..., k_n.}
(resp. p; € {1,...,kp,}) for every 1 < i < A. The set of all the extracted
w-Z*-located words of 1 is denoted by E (i) (resp. all the extracted w-located
words of o is denoted by E(w)).

An extracted variable w-Z*-located word (resp. extracted variable w-
located word) of  is a variable w-Z*-located word u € Lo(X, k;v) (resp.
u € L(X, k;v)) with

U= Wy, (P1,q1) * ... % Wy, (P, @n) (TESP. U = Wy, (P1) * - . . * Wa, (D)),

where A € N, ny < ... <ny € N, (pi,q) € {1,...,ky,} x{1,...,k_,,} U
{(v,v)} for every 1 < i < X and (v,v) € {(p1,q1),---,(Pr,qn)} (vesp. p; €
{1,.. . ky JU{v} forevery 1 <i < Xand v € {p1,...,pr} ). The set of all the
extracted variable w-Z*-located words of W is denoted by EV (w) (resp. the
set of all the extracted variable w-located words of w is denoted by EV (w)).
Let



EV> (i) = {ii = (tp)nen € L¥(S, k;0) : u, € EV () for every n € N},

If @ € EV" (i) (resp. @ € EV>(w)), then we say that @ is an extraction
of W and we write @ < . Notice that for @, € EOO(E,E; v) (resp. u,w €
L>®(2, k;v)) we have @ < 4 if and only if EV (@) C EV (@) (resp. EV (i) C
EV ().

Using the theory of ultrafilters we proved in [4], [5] the following partition
theorem for w-Z*-located words and for w-located words.

Theorem 2.2 ([{], [5]) Let & = {a, : n € Z*} be an alphabet, k =
(kn)nezs € N such that (kp)nen and (k—_,)nen are increasing sequences, v ¢ %
and let @ = (wp)nen € L¥(S,k;0) (resp. © = (wn)neny € L®(S, k;v)). If
L(X,k) = CLU...UC, (resp. L(S,k) = C1U...UC,), s € N, then there exists
U< and 1 < jy < s such that

E(i0) C C;, (resp. E(@) C Cj,).

3 Implications of the partition theorem to topological dynamics

We will prove a topological formulation (in Theorem 3.1) of the partition
Theorem 2.2, important for proving later (multiple) recurrence results for
systems of continuous maps from a compact metric space into itself indexed
by w-Z*-located words (Theorem 3.6), which extend fundamental recurrence
results of Birkhoff ([1]) and Furstenberg-Weiss ([6], [8]).

Let an alphabet 3 = {a, : n € Z*} and k= (kn)neze € N, where (k;,)nen,
(k_n)nen are increasing sequences. Observe that L(3, k) can be considered as
a directed set with partial order either Ry or R,. So, in a topological space
X, we can consider {x,}

weL () C X either as an Ry-net or as an Ry-net
in X. Consequently, {Zw},cp s i an Ro-subnet of {z,}, ci(niy- Moreover,
{xw}weﬁ(ﬁ) for @ € L°(X,k;v) is an Ry-subnet of {xw}wef(z iy and respec-

tively {Zw }wer@) for © € L®(X, k;v) is an Ry-subnet of {Twtwersp-
Let zg € X. We write

Ry- lim z, =29
weL(S,k)

if {zw}, ci(npy converges to g as Ri-net in X, i.e. if for any neighborhood
V' of zg, there exists ng = ng(V) € N such that z,, € V for every w with



min{— max dom™ (w), min dom™(w)} > ng. Analogously, we write

Ry- lim =z, = x9
wEL(X,K)

if for any neighborhood V' of xg, there exists ny = no(V') € N such that x,, € V
for every w with min dom(w) > ny.

We will give now a topological reformulation of Theorem 2.2.

Theorem 3.1 Let (X,d) be a compact metric space, ¥ = {a,, : n € Z*}
be an alphabet, k= (kn)neze C N such that (ky)nen, (k—n)nen are increasing
sequences, v ¢ % and @ = (wn)peny € L®(S,k:v) (resp. © = (wp)nen €
L>(3, k;v)). For every net {xw}weL =i EX (resp- {Zw}yer i € X), there
exist an extraction 4 < w of W and xy € X such that

Ry- lim z, =zo (resp. Ry- lim_ x, = xo).
wEE(T) weE(d)

Proof. For z € X and € > 0 we set B(z,e) = {y € X : d( LY
(X d) is a compact metric space, we have that X = U™, B(z

y) < } Since

I
ri,.. .zl € X. According to Theorem 2.2, there ex1st iy —<

-

r some
d 1<

(z},3) )
Z , 2) € X, such that
) and consequently there exist iy < @ and 1 < iy <

w\»—t
SN—

) mi

11 < my such that {a:w} B(i1) - B(%ll %) (vesp. {$w}weE 1)

U:J) @l

Analogously, since B(
B(z},, 2) - U;n21B(
me such that {in}weE(uz

(Un)nen € L>® (2, k;,v) (resp. (un)neN C L>(%, k: ;v)) such that @, < 4, < W
for every n € N and closed balls B(27 a? , 5), for n € N such that for every n € N

is compact, there exist 2%, . ..

? m

Z )4
C B(z{,3)N B(a? 22, 7). Inductively, we construct

{xw}weﬁ(ﬁn) - n?:l B($3j7 2%) (resp. {Tw tuwen(@,) C ﬂ] 1B( Li;s 2:))

If w, = (w,(gn))keN for every n € N, then we set @ = (w™),en. Of course
@ < 0. Let {xo} = Npen Bla? 2l 57). Then Ry-lim web(@) Tw = To (resp. Ry-
limyep@@ Tw = ¥o). Indeed, for e > 0 pick kg € N such that 1/2% < e.
Then, for every w € E(tl),) we have that d(zy, ) < 1/2% < e. Since
E(,) C E(iy,) for every n > ko, we have that E((w()usk,) C E(t,)
and consequently that {w € E(@) : min{— max dom™(w), mindom™(w)} >
no} C E(ily,) for ng = max{— min dom_(w,(!;‘))) max dom*(w,ﬁ0 ))} O

Remark 3.2 (1) Note that Theorem 3.1 follows from Theorem 2.2. But con-
versely Theorem 2.2 follows from Theorem 5.1. In fact one only needs the
assertion for finite spaces. Indeed, let L(3, k) = C1U...UC, (resp L(S, k) =

CiU...UCs), s € N. Then defining, for every w € L(E,k) (resp. for
w € L(X,k)), ©, = 1 if and only if w € C; and w ¢ C; for all j < 1,



we have, according to Theorem 3.1, that there exist i = (Up)peny < W and
1 < jo < s such that Rl—limweg(ﬁ) Ty = Jo (resp. Ro-limyep@) Tw = Jo)-
For ng large enough and @y = (Unyng)nen we have that E(iy) C Cj, (resp.
E(i) € Cj, )-

(2) Observe that if Ri-lim, g Tw = o for @ = (tn)nen € L®(S, k;v),
then the sequence (T, (p,.qn))nen converges uniformly to xo for each sequences
((Pry @n))neny’ € N X N with 1 < p, < k,, 1 < g, < k_,. Analogously, if
Ry-limyepa) Tw = %o for & = (Un)nen € LOO(E,/Z; v), then the sequences
(Zu,,(pp) Jnen converge uniformly to xq for all the sequences (pp)neny € N with
1< pn < ky.

(3) The particular case of Theorem 2.2 for words in L(E,E), where ¥ is a
finite alphabet, gives Carlson’s partition theorem in [3], whose topological re-
formulation has been given by Furstenberg and Katznelson in [7].

(4) The particular case of Theorem 2.2 for words in L(X,k) where ¥ is a
singleton and k= (kp)nen with k, = 1 for all n € N (so, the words can be
coincide with its domain) is Hindman’s partition theorem in [9]. Furstenberg
and Weiss in [8] gave the topological reformulation of Hindman’s theorem in-
troducing the I P-convergence of a net {xF}Fe[N]g‘g i a topological space X to
o € X, i.e. if for any neighborhood V' of xq, there exists ng = ng(V) € N
such that xp € V' for every F' € [N|S§ with min F' > ng. In this case we write
]P—limFe[Nﬁg Tr = . Also, using the I P-convergence, they proved important

>
results in topological dynamics (see [6]).

In the following proposition we will characterize the R;-convergence of nets
{xw}weZ(E,E) and the Rp-convergence of nets {Zw},c s as uniform [P-
convergence, pointing out the way for strengthening results involving the I P-
convergence.

Proposition 3.3 Let X be a topological space, W = (Wy)nen € EOO(Z,E;U)
(resp. W= (wn)neN € LOO(Ea k; U)) and {xU’}wGZ(E,E) g X (7“68]7. {xW}weL(E,E) g
X ). For a sequence ((pn,qn))ney € N X N with 1 < p, < k,, 1 <gq, < k_,
and ' = {ny < ... < ny} € [N|S} a finite non-empty subset of N we set

((Pnsan))nen _ (Pn)nen _
:fyZ"F};D ! o= waq (p’nl7qn1)*"'*wn)\(pn)\7Q’rLA) (Tesp. yFP o= 'rwnl (pnl)*---*wnk(pnk))'
en
Ry-lim,, 5 Tw = %o if and only if IP-limpepy<e y%(p"’q”))"eN = xo uniformly

for all sequences ((pn, Gn))neny € N X N with 1 <p, <k,, 1 <gq, <k_,

(resp. Ro-limycp(w) Tw = To if and only if IP'limFe[N]§g yg’")”eN =1

uniformly for all sequences (pn)neny € N with 1 < p, < k,).

Proof. (=) Let V be a neighborhood of xg. There exists ng = no(V) € N such
that x,, € V for every w € E(W) (resp. w € E(w)) with min{— max dom™ (w),



min dom™ (w)} > ng (resp. with mindom(w) > ng). So, for F' € [N]S§ with
no < min F we have that y\P e ¢ 7 (resp. yFrne € V) for all sequences
((Pry @n))nen € N X N with 1 < p, < kp, 1 < g, < k_y, (resp. (Pn)neny € N
with 1 < p, <k,).

(<) Toward to a contradiction we suppose that there exists a neighborhood
V' of x( such that for every n € N there exists w, = W, ,,(Pmy,> Gmrp) * - - - %
W (s ) € BD) (105D 14y = Wiy (B V.- Ry, (Brs) € F()
with min{— max dom™ (u,), mindom™*(u,)} > n (resp. mindom(u,) > n)
and x,, ¢ V. We can suppose that u, <g, Upi1 (resp. u, <rgr, Uny1) for
every n € N. Accordin to the hypothesis there exists ng € N such that
ygp"’qn))”EN € V (resp. yp" " e V) for all sequences ((pn,Gn))neny € N x N
with 1 <p, <k, 1<gq,<k_, (resp. (Pn)neny € N with 1 <p, <k,) and all
F € [N]5§ with min F' > ng. Then z,,, €V, a contradiction. O

We will now give some applications of Theorem 3.1 to topological dynam-
ical systems extending fundamental recurrence results of Birkhoff ([1]) and
Furstenberg-Weiss ([6], [8]). Firstly, we will introduce the notions of L(X, k)-

systems and L(X, k)-systems of continuous maps of a topological space into
itself.

Definition 3.4 Let X be a topological space, ¥ = {a, : n € Z*} be an
alphabet and k = (kn)nezr € N such that (kp)nen, (k—pn)nen are increasing
sequences. A family {Tw}wef(z P (resp. {T"} e (niy) of continuous functions
of X into itself is an E(Z,E)-system (resp. an L(E,Ig)-system) of X if
T%r o T2 = T2 for wy <g, wy (resp. for wy <g, ws).

Example 3.5 Let X be a topological space.

(1) Let T : X — X be a continuous map. For an alphabet ¥ = (my,)neny C N,
k= (kn)nen € N an increasing sequence and (1,)nen € N we define for every
W= Zp, ... %, € L(, k)

Tw — Tlnlzn1+...+ln/\zn/\ )

Then {T"} ,c sy is an L(Z, k)-system of X.
Moreover, for a sequence {1, }nen of continuous maps from X into itself defin-
mg

Tw o Tllnl an Tln)\Zn)\
- 1

we have another L(X, k)-system of X .

(2) For a given sequence {T,,}nez~ of continuous maps from X into itself, ¥ =
(an)nez C N, k= (kn)nezr € N such that (kn)neN, (k_ n)neN are increasing
sequences and (1, )nez- C N we define for w = z,, ...z, € L(E k:)



lnq 2n ln, z
Tom-nn = Tii™ o o Ty ™,

Then {Tw}wef(z 7y s an L(Z, k)-system of X.
In particular, if T,S : X — X are two continuous maps, then we can replace
T, with T" and T_, with S™ for every n € N.

Via Theorem 3.1, we will prove the existence of strongly recurrent points in a
compact metric space X for an L(X, k)-system as well as for an L(X, k)-system
of it. Moreover, we will point out the way to locate such points.

Theorem 3.6 Let {Tw}wef(z B (resp. {T"}ermpy) be an L(3, k)-system

—

(resp. L(E,E)-system) of a compact metric space (X,d), W € E"O(E,E;v)
(resp. W € L>®(X, k;v)) and x € X. Then there exist an extraction @ < W of
w and xg € X such that

Ri- lim T%(z) = x¢ (resp. Ry- lim TY(z) = o).
weE() weEE(W)

Moreover, xq is w-recurrent point, in the sense that

Ri- lim T%(xzo) = xo (resp. Ro- lm_ T"(xg) = o).
weE () weE (1)

Proof. According to Theorem 3.1 there exist an extraction « of w and zy € X
such that Ri-lim, g . TY(x) = xo (resp. Ro-limyep@ T (x) = xo). Let
e > 0. There exists ng € N such that d(T"(z),z9) < €/2 for every w €
E(@) with min{— max dom~ (w), min dom*(w)} > ngy (resp. w € E(#@) with
min dom(w) > ng). Let w € E (@) with min{— max dom™ (w), min dom* (w)} >
ny (resp. w € E(@) with mindom(w) > ng). Then d(T%(z),z0) < £/2.
Since T is continuous, there exists 0 > 0 such that if d(z,z¢) < J, then
d(T™(2), T%(x9)) < /2. Choose w; € E(i) (resp. wy € E(w)) such that
d(T" (z),z0) < 0 and w <g, wy (resp. w <g, wy). Then (T (T (x)), T (x0))
= d(T"" (x),T"(x)) < €/2. Since d(T"*"'(z),z9) < &/2 we have that
d(T"(z), z0) < €. O

In the following corollaries we will describe some consequences of Theorem 3.6
for the simplest L(X, k)-system generated by a single transformation.

For a semigroup (X, +) and (2, )neny € X let
FS((xp)nen) = {xn, +...+2p, : €N, ny < ... <nyeN}L
Corollary 3.7 Let (X,d) be a compact metric space, T : X — X a con-

tinuous map and (My)nen, (Th)neny € N with m, < mpy1,7n < Tpyq for
n € N. Then, there exist o € X and sequences (apn)neny C N, (Bn)nen C

10



FS((mn)nen), (fn)nen € FS((7n)nen) such that

IP- l%rr]l TzneFaﬁp”ﬁ"Jrq"%(a?o) = g, (in particular, hm TontPnfntinin (g0) = )
FeNJS

uniformly for all sequences ((Pn, Gn))nen € NxXN with0 < p, <n,0< ¢, <n.

Proof. Let ¥ = (ay)nez2 € N with a_,, = a,, = n for n € N and k=
(kp)neze € N with k_, = k, = n+1forn € N. For w = z,,...2,, €
L(Z, k) we set Tomi—m = T=mM& o o T~ o TMt1Wnis1 o o TMany

where n;, = maxdom™(w), n;11 = mindom™(w). Then {T"} we(sp) 18 an

L(Z, k)-system of X (see Example 3.5(2)). Let @ = (wy)nen € L¥(, k; v)
with w,, = z2_,, zp, , where z_,. = 2, = v. We apply Theorem 3.6. So, there
exist an extraction @ = (up)neny € L¥(X, k;v) of @ and z9 € X such that
Ry-lim, &0 T%(zo) = xo.

According to Proposition 3.3, if y{Pram)net — puny (b g Jeestiny (ryonn) (g0,
then, IP-limpepy<e y%(p man)net — o ymiformly for all sequences

((pn,Qn))neN g N XNWlth 1 Spn §n+17 1 S dn S n+1
Let Tun(Pnan)) = TontPa=1)fat@n=0m where 8, € FS((My)nen) and 7, €

FS((rn)nen). Then IP'hmFe[N]gg T2ner Q"er”ﬁ”q“”(:vo) = w9, (in particular,

lim T +Prbntanyn (0) = 74) uniformly for all sequences ((pn, @n))neny € N x N
with 0 <p, <n,0<gq, <n. O

Corollary 3.8 Let (X,d) be a compact metric space, T : X — X a continu-
ous map and (My)nen, (Tn)nen C N be sequences with m, < my1,7n < Tnit
for alln € N. Then, there exist xy € X and sequences (y)nen C N, (Bn)nen €
FS((mp)nen), (Wn)nen € FS((1n)nen) such that for every e > 0 there exists
ng € N which satisfies

d(TPrBntanyn (T (14)), T (24)) < €
for every n > ng and ((pn, ¢n))nen € N X N with 0 < p, <n, 0 < g, < n.
Proof. 1t follows from Corollary 3.7. a

We will define now the recurrent subsets and recurrent elements of a compact
metric space X for an L(X, k)-system as well as for an L(X, k)-system of it.

Definition 3.9 Let {Tw}weL £.0) (resp. {T"} permiy) be an L(3, k)-system

(resp. L(E k) system) of continuous maps of a compact metric space (X,d)
and @ € L®(3, k;v) (resp. @ € L®(3, k; U))

A closed subset A of X s said to be w-recurrent set if for any m €
N, ¢ > 0 and any point v € A there exist y € A and u € EV (W) with
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min{— max dom™ (u), mindom™ (u)} > m (resp. u € EV (W) with min dom(u)}
> m) such that d(T"®9(y),z) < ¢ for every 1 < p,q < m.

An element x¢ of X is said to be W-recurrent iff R;-lim T%(x) = xo

wEE(ﬂ)
(resp. iff Ro-limyep@a T (x0) = x0) for some i < 0.

In the following example we point out the way to locate recurrent subsets of
a compact metric space X for a given L(X, k)-system as well as for a given
L(%, k)-system of it.

Example 3.10 Let (X,d) be a compact metric space and let F(X) be the
set of all nonempty closed subsets of X endowed with the Hausdorff met-
ric d (where d(A, B) = max(sup,c 4 d(z, B), sup,cpd(x, A)]). Then (F(X), d)
is also a compact metric space. Let {T“’}wez(z’];) (resp. {T"} ern i) be an

E(E,E)—system (resp. L(E,E)—sysjem} of continuous maps of (X,d). We de-
fine T : F(X) — F(X) with TY(A) = TY(A). Then {Tw}wef(z P (resp.
{T“’}weL(Z R/ 1s an L(, k)-system (resp. L(Z, k)-system) of (F(X),d). Ac-
cording to Theorem 3.6, for every W = (wWy)neny € EOO(Z,I;;U) (resp. W =

(Wn)nen € L®(X, k;v)) there exist A € F(X) and an extraction @ < @ of 0
such that

Ri- lim TY(A)=A (resp. Ro- lim T%(A) = A).

wEE (@) weE(1)

Then A is w-recurrent in (X, d). Observe that it is enough Ry-lim = ) Tv(A)

weE(d
2 A (resp. Ra-limyepm T (A) 2 A) in order A to be w-recurrent.

Proposition 3.11 Let A be a w-recurrent subset of a compact metric space
(X,d). Then for every € > 0 and m € N there exist u € EV (W) with
min{— max dom™ (u), mindom™(u)} > m (resp. u € EV (W) with min dom(u)
>m) and © € A such that

d<Tu(pr) (I‘), Jj) < € fO’F every 1 < b, q <m.

Proof. Let ¢ >0 and m € N. For a zp € A and &1 = £/2 there exist z; €
A and u; € EV(W) with min{— maxdom™(u;), mindom™(u1)} > m (resp.
u; € EV(w) with min dom(u) > m) such that d(T" "9z, x4) < ¢ for every
1 <pg<m. -

Let have been chosen zg,z1,...,2, € A, uy <g, ... <g, U, € EV (W) (resp.
Uy <R, - <g, Uy € EV(@)) such that d(T%Poa)*wi®idi)(z,) x; 1) < /2
forevery 1 <i<j<rand1<p,q <m,foralli<l<j.

Since T are continuous functions, there is €, < ¢/2 such that if d(z,z,) <
g, then d(TviPuaiurprar) () o, 1) < /2 for every 1 < i < r and 1 <
p,q < m, for all © < 1 < 7. Since A is w-recurrent, there exist z,., € A
and u,.; € EV(W) with u, <g, uy41 (resp. u,11 € EV(W) with u, <g,
Uy41) such that d(T%+®D(z,,1), z,) < &, for every 1 < p,q < m. Hence,
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d(Tw Pt s Pronaren) (2 1) 2o 4) < g/2 for every 1 < i <r+1and 1<
pL,q <m, foralli <l <r+1.

Since (X, d) is compact, there exist ¢ < j € N such that d(z;, z;) < €/2. Hence,
for u = iy % ... %u; € EV (@) (resp. u = w11 % ... %u; € EV(w)) we have
d(T“PDz; x,) < ¢ for every 1 < p,q < m. O

Definition 3.12 A closed subset A of a compact metric space X is homo-
geneous with respect to a set of transformations {T;} acting on X if there
exists a group of homeomorphisms G of X each of which commutes with each
T; and such that G leaves A invariant and (A, G) is minimal (no proper closed
subset of A is invariant under the action of G).

In the following proposition we give a sufficient condition in order a homoge-
neous subset to be strongly recurrent.

Proposition 3.13 Let A be a homogeneous set in a compact metric space
X with respect to the system {Tw}wef(z B (resp. {T"}ermpy) and @ €

ZOO(Z,/;; v) (resp. W EAL/OO(Z,/;; v)). If for every e > 0 and m € N there
exist x,y € A and u € EV (@) with min{— max dom™ (u), min dom™(u)} > m
(resp. u € EV (@) with mindom(u)} > m) such that d(T*P9(y),z) < e for
every 1 < p,q < m, then A is w-recurrent.

Proof. Let ¢ > 0, m € N, and G be a group of homeomorphisms commut-
ing with {7}, and such that G leaves A invariant and (A, G) is minimal.
Let {Uy,...,U,} be a finite covering of A by open sets of diameter < £/2.
Then, from the minimality of A, we can find for each 1 < ¢ < r a finite set
{gi,..., 4%} C G such that Ué-;l(g;)*l(Ui) = A. Let Gy = {g; 1<i<r1<
Jj <l;} CG. Then for any =,y € A we have mingeq, d(g(z),y) < /2.

Let & > 0 such that if d(z1,2,) < d, then d(g(x1),g(x2)) < € for every
g € Gy. According to the hypothesis, there exist z,y € A and u € EV (&) with
min{— max dom_(u), mindom™(u)} > m (resp. v € EV (&) with min dom(u)
> m) such that d(T""9(y),z) < § for every 1 < p,q < m. Then

AT 0D (g(y)), g(x)) = d{g(T*PD(y)), g(x)) < 2/2 for every 1 < p,q < m.
For a point z € A, find g € G with d(g(z), z) < £/2. Then d(T*®9(g(y)), z) <
d(T*PD (g(y)), g(x)) +d(g(z), z) < ¢ for every 1 < p,q < m. It follows that A
is w-recurrent. a
We will prove now that a recurrent homogeneous subset A of a compact metric
space X contains recurrent points, moreover these points consist a dense subset

of A.
Proposition 3.14 Let {T“’}wez S5 (resp. {T"} e s/ be an L(3, k)-system

(resp. L(X, k) -system) of continuous transformations of a compact metric

space (X,d) and @ € L™(,k;v) (resp @ e L¥(S,k;v)). A w-recurrent
homogeneous subset A of X contains w-recurrent points. Moreover, the -
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recurrent points of A consist a dense subset of A.

Proof. Let V' be an open subset of X such that VN A # 0 and let V! C V
be an open set such that V' N A # () and if d(x, V') < 6 for 6 > 0 then
x € V. Since A is homogeneous, there exists a group GG of homeomorphisms
commuting with {7} and such that G leaves A invariant and (A, G) is min-
imal. From the minimality of A, there exists a finite subset Gq C G such that
AC UgEG’o g—l(vl)'

Choose £ > 0 such that whenever x;,xo € X and d(x,z2) < ¢, then d(g(z1),
g(x2)) < § for every g € Gy. Since A is w-recurrent, according to Proposi-
tion 3.11, for m € N there exist z € A and u € EV (@) with min{— max dom™(u),
mindom™*(u)} > m (resp. u € EV(w) with mindom(u) > m) such that
d(T*PD(2), 2) < e for all 1 < p,q < m.

There exists g € Gy with g(z) € V' and since d(T%P9(g(2)),g(z)) < § for
every 1 < p,q < m, we have that T%"9(g(z)) € V for every 1 < p,q < m.
Hence, each open set V with V' N A # () contains a point 2’ = g(z) € A with
TuP9 " ¢V for every 1 < p,q < m. Since T% are continuous, we conclude
that for every open set V with VN A # () and every m € N there exists an open
set V4 such that V4 C V and T“®9V; C V for every 1 < p,q < m, for some
u € EV (@) with min{— max dom™ (), min dom* (u)} > m (resp. u € EV (D)
with min dom(u) > m).

Let Vj be an open subset of X such that VN A # (). Inductively we can define
a sequence (V,)nen of open sets and a sequence @ = (uy)pen € EOO(Z, E;U)
(resp. @ = (tn)nen € L®(3, k; v)) with @ < @ such that V,, C V,_1, VuNA £ 0
and T Pra)V, C VW, for every n € Nand 1 < p, < k,, 1 < g, < k_,,. We
can also suppose that the diameter of V,, tends to 0. Then ﬂneN VaNA = {z0}.
For 1 <1, < ... < 1, we have that s (Piy oiy > ¥ty (Pi oG, Vi. € Vi,—1. Then
T*(zo) € V; for every w € E(@) with uzy <g, w (resp. w € E( i) with
Uit1 <R, W) SO Ry-lim, T%(xg) = xo (resp. Ry-lim,, &0 T (zg) = wp).
Hence, oy € ANV} is a w-recurrent point. This gives that the set of w-recurrent
points in A is dense in A. O

Now, we shall prove a multiple recurrence theorem extending Theorem 3.6, in
case the transformations are homeomorphisms. We can say that the following
theorem is the “word”-analogue of Birkhoff’s multiple recurrence theorem.

Theorem 3.15 Let {le}weL(Ek AT }weL(z 7) (resp. {T1"}ers iy -

{T“’}weL =) ) be m systems of tmnsformatwns of a compact metric space X
all contamed in a commutative group G of homeomorphisms of X and let

@ e Lo,k v) (resp. @ € L®(X,k;v)). Then, there exist 7o € X and an
extraction 4 < W such that for every 1 <i <m

R;-lim wel( )TZ-“’(Q:O) =g (resp. Ry-limyep@ 17" (x0) = o).

Moreover, in case (X, G) is minimal, the set of such points xq is a dense subset
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of X.

Proof. We assume without loss of generality that (X,G) is minimal, oth-
erwise we replace X by a G-minimal subset of X. For m = 1 we obtain
the assertion from Theorem 3.6. We proceed by induction. Suppose that the

theorem holds for m € N and that {77"} wel (SR - AT +1}weL =0 (resp.
{11} vermiy - - ATt Ywermpy) Pe m+1 such systems We set S =T o
(7w )t for all 1 <i < m. Then S;"**? = S** 0 S;* for every 1 < i < m and
wy <pg, wy (resp. wy <g, wsy), since all the maps commute. By the induction
hypothesis there exist y € X and « < « such that R;-lim weB (i) S¥(y) =y
(resp. Ro-limyep@) Si°(y) = y) for every 1 <i < m.

Consider the product X™*! and let A™*! be the diagonal subset consisting of
the (m + 1)-tuples (z,...,z) € X! Identifying each g € G with g x ... x g
we can assume that G acts on X™%!1. Also, the functions T x ... X Tn”{ﬂ
acts on X™"! and commute with the functions of G. Since G leaves A™H!
invariant and (A™"! @) is minimal, A™*! is a homogeneous set. According to
Proposition 3.14, it suffices to prove that A™*! is @-recurrent. But, according

to Proposition 3.13, the set A™*! is w-recurrent, since R;- lim we E(ﬂ)(T“’

Tnful)—&-l)[((T;an—i-l)_ (T#L]—l—l)_l)«ya s 7y))] = (ya s 7y> (resp Ry~ hmeE(ﬁ')
(T8 o X T (T2 %o X (T2) ) (W) = (o). O

Theorem 3.15 has the following consequence.

Proposition 3.16 Let {7}"}

T} wer Z7,{)) be m systems of tmnsformations of a compact metric space X,
all contaz’ned m a commutative group G of homeomorphisms of X, which acts
minimally on X. For @ € L®(2, k;v) (resp. © € L®(Z, k:v)) and U a non-
empty open subset of X, there exists U < W so that

(TP Y U) # O for every w € E(i) (resp. w € E()).

EDE

1

%

Proof. Since G acts minimally on X, X = U,cq, 97" (U), where Gy is a finite
subset of G. Let 0 > 0 be such that every set of diameter < ¢ is contained
in some g~1(U) for g € Gy. According to Theorem 3.15, there exist zo € X
and % < W such that R;-lim weE(@ - T (x0) = xo (resp. Ro-limyepm) T} (z0) =
xg) for every 1 < i < m. Refine @ such that d(T}"(x¢),z0) < §/2 for every
w € E(@) (resp. w € E(@)) and 1 < i < m. Then there exists g € Gy such
that T (z¢) € g~ (U) for every w € E(@) (vesp. w € E(@0)) and 1 < i < m.
Consequently, g(zo) € N, (1)1 (U) for every w € E(@) (resp. w € E(i)).
O
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4 Applications

We will indicate the way in which the recurrence results for topological systems
or nets indexed by words, that we proved in the previous section, can be
applied to systems or nets indexed by semigroups that can be represented
as words (Example 2.1) and consequently to systems or nets indexed by an
arbitrary semigroup.

Semigroup (Q, +)

As we described in Example 2. 1( ), the set Q* of the nonzero rational numbers
can be identified with a set L(, k) of w-Z*-located words, via the function
g: L(Z, k) — QF, with

g(qtl s qtl) = Ztedom (w) Gt (( b ) + Ztedom‘*' )qt<_1)t+lt!'
We extend the function g to the set Z(Z, E; v) of variable words corresponding

to each w = @, ... q, € ZN}(Z,/;; v) a function ¢ = g(w) which sends every
(i,7) € Nx N with 1 <i < —maxdom™ (w), 1 < j < mindom™(w), to

q(i, ) = g(T, th ) it Z H +Zq D D (=1)

teC— teV— T teCt teV+

where C~ = {t € dom™(w) : ¢ € X}, V- ={t € dom™(w) : ¢ = v} and
Ct={tedomt(w): ¢ € X}, VT ={t € dom™(w) : ¢ =v}. Let Q(v) =
g(L(2, k;v)). Then the extended function g : L(X U {v}, k) — Q* UQ(v) is
one-to-one and onto. For ¢1, ¢, € Q* U Q(v) we define the relation

G <r @2 = 9 (@1) <r, 9 ' (q2).

So, {z,}seqr € X, where X is a topological space, can be considered as an
Ri-net and consequently we can define, for zy € X, Ri-limgecq- x4 = ¢ iff for
any neighborhood V' of z, there exists ng = no(V) € N such that z, € V for
every ¢ € Q* with min{— maxdom™(g~*(q)), min dom™ (g7 (q))} > nq.

Observe that g(w; xws) = g(wy) 4 g(ws) for every wy <g, wy € L(XU{v}, k).

So, if § = (qn)nen € Q(v) = {(gn)nen : ¢n € Q(v) and ¢, <g, Gny1}, then
the set of the extractions of ¢ is

EV™(§) = {7 = (ra)nen € Q@*(v) : 1 = g(un) for (un)uers € BV (97 (dn))ner)}
and the set of all the extracted rationals of ¢ is

E(Q) = {q € FS[(¢u(in, jn))nen] : ((ins jn))neny € NX N with 1 < i, j, < n} =

= {g(w) : w € E((g7"(gn))Jnex) }-
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Of course, {xq}qeﬁ@ is an R;-subnet of {z,},cq*-

Hence, via the function g, all the presented results relating to w-Z*-located
words give analogous results for the rational numbers. For example Theo-
rems 3.1, 3.15 give the following:

Theorem 4.1 For every net {x,},eq+ in a compact metric space (X, d) and
7 = (qu)neny € Q®(v) there exist an extraction 7 = (rp)nen of ¢ and g € X
such that

Ry -1iMge pS{(rn (injn))nen] £g = To (0 particular x,, ¢, i)y — %o),
uniformly for every ((in, jn))neny € N X N with 1 <'i,, 7, < n.

We call a family {77} ,c0« of continuous functions of a topological space X
into itself a Q*-system of X if T% o T2 = T1*% for ¢; <g, Go.

Theorem 4.2 Let {T},cox,-- -, {T%  oeq be m Q*-systems of transforma-
tions of a compact metric space X, all contained in a commutative group G of
homeomorphisms of X and let ¢ € Q> (v). Then, there exist xto € X and an
extraction 7= (r,)nen of ¢ such that, for every 1 <i < m,

Rty (om0 ) T2 () = 0 (i particular, T/ (z5) — ),

uniformly for all ((in, jn))nen € N X N with 1 < i,, j, < n.

Moreover, in case (X, G) is minimal, the set of such points xq is a dense subset
of X.

Semigroup (Z, +)

As we described in Example 2.1(2), for a given increasing sequence (k,,)nen C
N with k, > 2, the set Z* of the nonzero integer numbers can be identified
with a set L(X, k) of w-located words, via the function

g: L(Z, k) — Z*, with g(z,, ... Zg) = b 2, (—1)% M,

where [p =1 and [, = kq ... ks, for s > 0.

We extend the function g to the set L(3, k;v) of variable w-located words
corresponding to each w = z,, ...z, € L(, k;v) a function z = g(w) which
sends every ¢ € N with 1 <4 < Eyin dom(w), to

Z(Z> = Q(Tz‘(w)) = seC Zs(_l)s_lls—l + Zsevi(—l)s_lls—l.

where C' = {s € dom(w) : z; € ¥} and V = {s € dom(w) : zs = v}.
Let Z(v) = g(L(X, k;v)). Then the extended function g : L(X U {v}, k) —
Z* JUZ(v) is one-to-one and onto. For z1, 2o € Z* UZ(v) we define the relation
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21 <p, 22 <= g (1) <m, 9 '(22).

So, {z,}.ez+ C X, where X is a topological space, can be considered as an
Rs-net and consequently we can define, for xqg € X, Ro-lim.cz+ x, = x¢ iff for
any neighborhood V' of zg, there exists ng = no(V') € N such that z, € V for
every z € Z* with min dom(g~*(2)) > ny.

Observe that g(w; xws) = g(w;) + g(ws) for every wy <g, we € L(SU{v}, k).
So, if 2= (23)nen € Z7(V) = {(2n)nen : 2n € Z(v) and z, <gr, Zni1},

then the set of the extractions of 2" is

EV>(2) ={U = (Vn)nen € Z%°(V) : v, = g(uy) for (tn)nen € EV®((g71(20))nen) }
and the set of all the extracted integers of 2" is

E(Z) = {z € FS[(zn(in))nen] : (in)nen € N with 1 < < kn} =
= {g(w) :w € E((g7"(2n)Jnen) }-
Of course, {x.}.cp(z is an Ro-subnet of {z,}.cz-.

Hence, via the function g, all the presented results relating to w-located words
give analogous results for the integers. For example Theorems 3.1, 3.6 give the
following.

Theorem 4.3 For every net {z.}.cz- in a compact metric space (X,d), and
Z = (Zn)nen € Z2°(v) there exist an extraction U = (vy)nen of 2 and g € X
such that

Ro-lim.c S (in))nen] T= = To (in particular ., ;) — o),

uniformly for all (ip)neny C N with 1 <14, < k,.

We call a family {7%},cz« of continuous functions of a topological space X
into itself a Z*-system of X if T o T%2 = T*%%2 for z; <g, 22.

Theorem 4.4 Let {T%},cz- be a Z*-system of continuous maps of a compact
metric space (X,d), Z = (zy)nen € Z®(v) and y € X. Then there exist an
extraction U = (v,)nen of Z and xy € X such that

Ro-lioe p8((on (in))ner) T2 () = 0, Ro-liloeps((n (in))ner) T (20) = 2o
uniformly for all (iy)neny €N with 1 <1, < k,.

As we described in Example 2.1(3), the set of natural numbers can be identified
with a set L(X, k) and consequently all the presented results relating to w-
located words give analogous recurrence results for the natural numbers.

We will now give some applications of the previously mentioned recurrence
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results for systems or nets indexed by words to systems or nets indexed by an
arbitrary semigroup. For simplicity we will present only the case of commuta-
tive semigroups.

Let (S,+) be a semigroup and (y;,)nez+ C S for every [ € Z*. Setting ¥ =
{a, : n € Z*}, where o, = n for n € Z* and k = (k,)nez+ € N, where (k,,)nen
and (k_,)nen are increasing sequences, we define the function

Q: E(Z, E) — S with ©(z, ... 2n,,) = 2y Yz, i

We extend the function ¢ to the set E(E, k; v) of variable words corresponding

to each w = 2,, ...z, € L(X,k;v) a function s = ¢(w) which sends every
(i,7) € Nx N with 1 < j < —maxdom™ (w), 1 < ¢ < mindom™(w), to
s(i,7) = ¢(Tii,5(w)) € S. In case (S, +) is a commutative semigroup

8(17.]) = SD(UJ)((Z:.])) = ZtGC Yot + Zteer Yit + ZtEV* Y—jtr

where C' = {n € dom(w) : z, € ¥}, V- = {n € dom™(w) : z, = v} and
Vt={ne€dom®(w): z, =v}.

For a subset {zs : s € S} of a topological space X we can consider the
Ry-net {xw(w)}wei(z p in X Let @ = (Wp)nen € L®(X, k;v) such that R;-
hmweﬁ(w) Tp(w) = To, for zg € X. Then setting, for every n € N,

Sp=w(wy) : {1,... k. } x{1,... k_,} — X with
sn(i, J) = 2oteCh Yent + Ztev,j Yit + ZteV{ Y—jts

we have that Rl_thGFS[(Sn(in,jn))neN] s = X

uniformly for all ((i,,Jn))ney € N x N with 1 < 4, < k,, 1 < j, < k_,.
We write Ri-liMgers|(s,(in,jn))nen] Ts = To if and only if for any neighbor-
hood V' of zg, there exists ng = no(V) € N such that z, € V for every

s € FS[(sn(in,jn)>

TLZ?’LO:| ’

Hence, via the function ¢, all the presented results related to w-Z*-located
words give analogous results for nets indexed by an arbitrary semigroup. For
example Theorems 3.1, 3.15 give the following.

Theorem 4.5 Let (S,+) be a commutative semigroup and (Ypn)nez S S
for every | € Z*. For every subset {xs : s € S} of a compact metric space
(X,d) there ezist xo € X and, for every n € N, functions s, : {1,...,kp,} X
{1,... k_pn} — X with

Sn(ia j) = Ztecn Yzpat + Ztev,j Yit + Ztev,; Y—jt

where C,, = C,; UCY C Z* with maxC,,,; < minC,, < maxC,” < minC,},,
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V.t C N with max V" < minV,%, and V,; C Z~ with minV,” > maxV,,,
such that

Ry -lime pS[(sn (i jn))nen] Ts = To (in particular, T, g, j.) — o),
uniformly for every ((in, jn))nen € N X N with 1 <, <k, 1 < j, < k_,.

Corollary 4.6 Let (S,+) be a commutative semigroup and (Yn)nez C S. For
every subset {xs: s € S} of a compact metric space (X,d) and functions p,q :
N — N there exist xo € X and (an)nen € FS[(Yn)nez]s (bn)nen € FS[(Yn)nen]
and (¢n)nen C FS[(Y—n)nen] such that

Rl _thEFS[(a7L+p(in)bvb+Q(j7b)07b)neN] Ts = Zo
(in particular, Tq, +p(i,)bntqGn)er — £0)s

uniformly for every ((in, jn))nen € N X N with 1 <'i,, j, < n.

Proof. Set y,.,, = p(l)y, for every [ € N and y;,, = q(—1)y, for every | € Z~
and apply Theorem 4.5. O

Let (S, +) be a commutative semigroup and (Y, )nez+ C S for every | € Z*. We
call a famlly {T*}ses of continuous functions of a topological space X into itself
an L(X, k)-system of S if T#w1) o Te(w2) = Telwixw) for yy <p wy € L(3, k).

Theorem 4.7 Let (S,+) be a commutative semigroup, (Yin)nezr C S for ev-
eryl € Z* and {1} }ses, - - -, {15 }ses be m L(X, k)-systems of transformations
of a compact metric space X, all contained in a commutative group G of home-

omorphisms of X. Then, there exist xg € X and, for every n € N, functions
S ALl ka ) x {1 ko — X with

Sn(iv ]) = Zte()n Yznat + Ztev,j Yit + ZtEV{ Y—jit

where C,, = C,; UCY C Z* with maxC,,; < minC,, < maxC,” < minC,},,,
V' C N with maXV+ <minV,\, and V7 C Z~ with minV,, > maxV, 4,
such that

Ry -1iMge pSi(sn (ingn))men] 13 (T0) = To for every 1 <i < m,
uniformly for every ((in, jn))nen € N X N with 1 < i, < k,, 1 < j, < n.

Moreover, in case (X, G) is minimal, the set of such points xq is a dense subset
of X.
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