JOINT TRANSITIVITY FOR LINEAR ITERATES

SEBASTIÁN DONOSO, ANDREAS KOUTSOGIANNIS AND WENBO SUN

Abstract

We establish sufficient and necessary conditions for the joint transitivity of linear iterates in a minimal topological dynamical system with commuting transformations. This result provides the first topological analogue of the classical Berend and Bergelson joint ergodicity criterion in measure-preserving systems.

1. Introduction - Main result

1.1. The joint ergodicity problem. Let (X, \mathcal{B}, μ) be a standard probability space equipped with an invertible measure-preserving transformation $T: X \rightarrow X$ (that is, $\mu(T A)=\mu(A)$ for every $A \in \mathcal{B})$. We say that the quadruple (X, \mathcal{B}, μ, T) is a measure-preserving system. In particular, the latter is called ergodic or weakly mixing if the transformation T is ergodic (i.e., every T-invariant set $A \in \mathcal{B}$ satisfies $\mu(A) \in\{0,1\}$) or weakly mixing (i.e., the transformation $T \times T$, acting on the Cartesian square $X^{2}:=X \times X$, is ergodic) respectively.

Given a weakly mixing measure-preserving system (X, \mathcal{B}, μ, T) and distinct non-zero integers a_{1}, \ldots, a_{d}, we have the following independence property of the sequences $\left(T^{a_{i} n}\right)_{n}, 1 \leq i \leq d .{ }^{1}$

Theorem 1.1 ([24]). Let (X, \mathcal{B}, μ, T) be a weakly mixing measure-preserving system. Then, for any $d \in \mathbb{N}$, any distinct non-zero integers a_{1}, \ldots, a_{d}, and any $f_{1}, \ldots, f_{d} \in L^{\infty}(\mu)$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{a_{1} n} f_{1} \cdot \ldots \cdot T^{a_{d} n} f_{d}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{d} d \mu \tag{1}
\end{equation*}
$$

where the convergence takes place in $L^{2}(\mu)$.
This result, in particular its recurrence reformulation on \mathcal{B}-measurable sets of positive measure, is a crucial ingredient in Furstenberg's approach in proving Szemerédi's theorem (that is, every subset of natural numbers of positive upper density contains arbitrarily long arithmetic progressions) by recasting it as a recurrence problem.

Later, in [5], Bergelson extended Theorem 1.1 to essentially distinct integer polynomial iterates. The convergence of general multiple ergodic averages for various classes of iterates to the righthand side of (1), also known as the "expected limit," developed to be a topic on its own (e.g., see $[5,7,9,12,14,15,18,19,20,21,29,30,31,32,38]$ for various results on polynomial and Hardy field, of polynomial growth, functions); the one of joint ergodicity.

[^0]Definition 1.2. Let $\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a measure-preserving system with commuting and invertible transformations ${ }^{2}$ and $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{d}(n)\right)_{n}$ be integer-valued sequences. We say that $\left(T_{1}^{a_{1}(n)}\right)_{n}, \ldots,\left(T_{d}^{a_{d}(n)}\right)_{n}$ are jointly ergodic (for μ) if for any $f_{1}, \ldots, f_{d} \in L^{\infty}(\mu)$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T_{1}^{a_{1}(n)} f_{1} \cdot \ldots \cdot T_{d}^{a_{d}(n)} f_{d}=\int_{X} f_{1} d \mu \cdot \ldots \cdot \int_{X} f_{d} d \mu \tag{2}
\end{equation*}
$$

where the convergence takes place in $L^{2}(\mu)$ (i.e., the $L^{2}(\mu)$-limit of the left-hand side of (2) exists and it takes the value of the right-hand side).

The first characterization of joint ergodicity is due to Berend and Bergelson.
Theorem 1.3 ([4]). Let $\left(X, \mathcal{B}, \mu, T_{1}, \ldots, T_{d}\right)$ be a measure-preserving system with commuting and invertible transformations. Then $\left(T_{1}^{n}\right)_{n}, \ldots,\left(T_{d}^{n}\right)_{n}$ are jointly ergodic (for μ) if and only if both of the following conditions are satisfied:
(i) $T_{i} T_{j}^{-1}$ is ergodic (for μ) for all $1 \leq i, j \leq d, i \neq j$; and
(ii) $T_{1} \times \cdots \times T_{d}$ is ergodic (for $\mu^{\otimes d}$).

There is a plethora of analogous joint ergodicity characterizations for generalized linear functions [6], polynomial functions [12, 15, 22, 23], and Hardy field functions [13, 16].

The objective of this article is to prove the corresponding to Theorem 1.3 result in the topological setting.
1.2. The joint transitivity problem. A \mathbb{Z}^{k}-system is a tuple $\left(X, S_{1}, \ldots, S_{k}\right)$ where X is a compact metric space and $S_{1}, \ldots, S_{k}: X \rightarrow X$ are homeomorphisms with $S_{i} S_{j}=S_{j} S_{i}$. We let $\left\langle S_{1}, \ldots, S_{k}\right\rangle$ denote the group generated by S_{1}, \ldots, S_{k}.

In order to state the result corresponding to Theorem 1.3 in the topological setting, we start with the notion of joint transitivity.

Definition 1.4. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system, $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$ and $\left(a_{1}(n)\right)_{n}, \ldots$, $\left(a_{d}(n)\right)_{n}$ be integer-valued sequences. We say that $\left(T_{1}^{a_{1}(n)}\right)_{n}, \ldots,\left(T_{d}^{a_{d}(n)}\right)_{n}$ are jointly transitive if there is a G_{δ}-dense subset $X_{0} \subseteq X$ such that for all $x \in X_{0}$, the set

$$
\left\{\left(T_{1}^{a_{1}(n)} x, \ldots, T_{d}^{a_{d}(n)} x\right): n \in \mathbb{Z}\right\}
$$

is dense in $X^{d} .{ }^{3}$
We call a \mathbb{Z}^{k}-system $\left(X, S_{1}, \ldots, S_{k}\right)$ minimal if, for any point $x \in X$, its orbit $\left\{S_{1}^{m_{1}} \cdot \ldots \cdot S_{k}^{m_{k}} x\right.$: $\left.\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}\right\}$ is dense in X. A system is transitive if there exists a point $x \in X$ whose orbit is dense; we say that any such point x is a transitive point (of $\left(X, S_{1}, \ldots, S_{k}\right)$). The pioneer work of Glasner [25], established joint transitivity for sequences given by iterates of powers of a transformation in a minimal and (topologically) weakly mixing \mathbb{Z}-system (X, T) (meaning that the product system ($X \times X, T \times T$) is transitive).

Theorem $1.5([25])$. Let (X, T) be a minimal weakly mixing \mathbb{Z}-system. Then, for any $d \in \mathbb{N}$, and distinct nonzero integers a_{1}, \ldots, a_{d}, the sequences $\left(T^{a_{1} n}\right)_{n}, \ldots,\left(T^{a_{d} n}\right)_{n}$ are jointly transitive.

[^1]Theorem 1.5 can be thought as the topological analogue of Theorem 1.1. This result was extended by Huang, Shao and Ye in [28], who obtained topogically joint ergodicity results under weakly mixing assumptions of several transformations but were able to deal with polynomial expressions and nilpotent group actions. Some follow-up works on this line are given in [8, 40].

We are now ready to state our main result, which can be regarded as the topological version of Theorem 1.3.

Theorem 1.6. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal system and $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$. Then $\left(T_{1}^{n}\right)_{n}, \ldots,\left(T_{d}^{n}\right)_{n}$ are jointly transitive if and only if both of the following conditions are satisfied:
(i) $\left(X, T_{i}^{-1} T_{j}\right)$ is transitive for all $1 \leq i, j \leq d, i \neq j$; and
(ii) $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive.

Remark 1.7. As in the measurable case with Theorem 1.3, Theorem 1.6 provides a characterization for all linear iterates.

Indeed, assuming that the iterate of the T_{i} is $a_{i} n+b_{i}, a_{i} \in \mathbb{Z} \backslash\{0\}, b_{i} \in \mathbb{Z}, 1 \leq i \leq d$, noting that the shifts by the b_{i} 's do not affect the denseness of the orbits, we can use the Theorem 1.6 for the functions $T^{a_{i}}$ (which still belong to $\left\langle S_{1}, \ldots, S_{k}\right\rangle$).

It is important to note that the problem in the topological setting differs significantly from the one in the measurable setting as the dense G_{δ} subset of X might have zero measure. For example, a minimal weakly mixing system (X, T) may exhibit a discrete spectrum with respect to some invariant measure. In such a system, $\left(T^{n}\right)_{n}, \ldots\left(T^{d n}\right)_{n}$ are jointly transitive but not jointly ergodic. In fact, any ergodic measure preserving system is measurably isomorphic to a minimal and uniquely ergodic (strongly) mixing system (see [34]).

We also want to emphasize that Theorem 1.6 fails without the minimality assumption. Indeed, in [35], Moothathu showed that there exists a non-minimal, strongly mixing shift (X, σ) such that, for every point $x \in X$, the set $\left\{\left(\sigma^{n} x, \sigma^{2 n} x\right): n \in \mathbb{Z}\right\}$ fails to be dense in X^{2}. Because (X, σ) is strongly mixing, the \mathbb{Z}^{2}-system $\left(X, \sigma, \sigma^{2}\right)$ satisfies conditions (i) and (ii) of Theorem 1.6, but the sequences $\left(\sigma^{n}\right)_{n},\left(\sigma^{2 n}\right)_{n}$ are not jointly transitive. It should be noted that there are no commuting transformations S_{1}, \ldots, S_{k} that generate a minimal action and such that $\sigma \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$. One reason for this is, of course, Theorem 1.6, but this can also be seen directly in Moothathus's example, using the fact that the set of σ-periodic points of a given period have to be preserved by $\left\langle S_{1}, \ldots, S_{k}\right\rangle$, which prevents minimality.
1.3. Structure of the paper. In Section 2 we recall some notions from the theory of dynamical systems. In particular, we provide equivalent statements to joint transitivity (Lemma 2.1), and we list properties of dynamical cubes and regional proximal relations.

In Section 3 we first characterize (in Theorem 3.1) regional proximal relations for product transformations and, finally, we prove Theorem 1.6 by an inductive argument.

2. Background material and useful facts

Definitions and conventions. For any \mathbb{Z}^{k}-system $\left(X, S_{1}, \ldots, S_{k}\right)$ and $m=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$, we write $S_{m}:=S_{1}^{m_{1}} \cdot \ldots \cdot S_{k}^{m_{k}}$. So, we may write a \mathbb{Z}^{k}-system as $\left(X,\left(S_{m}\right)_{m \in \mathbb{Z}^{k}}\right)$ whenever we do not need to stress the generators. With this convention, a \mathbb{Z}^{k}-system is minimal if for any point $x \in X$, its orbit $\left\{S_{m} x: m \in \mathbb{Z}^{k}\right\}$ is dense in X. We adopt a similar notation for subgroups of \mathbb{Z}^{k}. If $G \subseteq \mathbb{Z}^{k}$ is a subgroup, then $\left(X,\left(S_{m}\right)_{m \in G}\right)$ denotes the system given by the subaction of G.

We will use ρ to denote the metric on X, and slightly abusing notation, we will use ρ to denote the metric on the product space X^{d} as well, where $\rho\left(\left(x_{1}, \ldots, x_{d}\right),\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right)\right)=\sup _{1 \leq i \leq d} \rho\left(x_{i}, x_{i}^{\prime}\right)$.

Let $\left(X, S_{1}, \ldots, S_{k}\right)$ and $\left(Y, R_{1}, \ldots, R_{k}\right)$ be two \mathbb{Z}^{k}-systems. We say that Y is a factor of X (or that X is an extension of Y) if there exists a continuous and onto map $\pi: X \rightarrow Y$ (called the factor map from X to Y) such that $\pi \circ S_{i}=R_{i} \circ \pi$ for all $1 \leq i \leq k$. When π is a homeomorphism, we say that the systems are topologically conjugate.

There is a one-to-one correspondence between the factors and the closed invariant equivalence relations on X. Indeed, we can associate a factor map $\pi: X \rightarrow Y$ with the relation $R_{\pi}=\{(x, y):$ $\pi(x)=\pi(y)\}$, and, conversely, given a closed invariant equivalence relation R, we can associate it with a factor map $X \rightarrow X / R$ being the quotient map. A factor map $\pi: X \rightarrow Y$ is almost one-to-one if there exists a G_{δ}-dense subset Ω of X such that for any $x \in \Omega, \pi^{-1}(\pi(x))=\{x\}$. A factor map $\pi: X \rightarrow Y$ is open if $\pi(A) \subseteq Y$ is open whenever $A \subseteq X$ is open. Note that the latter implies that for any $x, x^{\prime} \in R_{\pi}$, and $\epsilon>0$, there exists $\delta>0$ such that if $\rho(x, y)<\delta$, then there exists $y^{\prime} \in X$ with $\rho\left(x^{\prime}, y^{\prime}\right)<\epsilon$ and $\left(x^{\prime}, y^{\prime}\right) \in R_{\pi}$.

A system $\left(X, S_{1}, \ldots, S_{k}\right)$ is equicontinuous if the family of functions generated by S_{1}, \ldots, S_{k} is equicontinuous. Any minimal equicontinuous \mathbb{Z}^{k}-system is topologically conjugate to a rotation on a compact abelian group (see [2, Chapter 2]). The maximal equicontinuous factor of a \mathbb{Z}^{k} system $\left(X, S_{1}, \ldots, S_{k}\right)$, is the largest equicontinuous factor of it. That is, any equicontinuous factor of (X, S_{1}, \ldots, S_{k}) is also a factor of the maximal one. The maximal equicontinuous factor of a minimal \mathbb{Z}^{k}-system is induced by the regionally proximal relation $\mathbf{R} \mathbf{P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$ (see Section 2.2).

Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system. A pair (x, y) is proximal if there exists a sequence $\left(n_{i}\right)_{i}$ in \mathbb{Z}^{k} such that $\rho\left(S_{n_{i}} x, S_{n_{i}} y\right) \rightarrow 0$ as i goes to infinity. The set of all proximal pairs is denoted by $P(X)$. It is well known that $P(X) \subseteq \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$ (see, for instance, [37]). A factor map $\pi: X \rightarrow Y$ is proximal if $R_{\pi} \subseteq P(X)$. Any almost one-to-one factor map between minimal systems is proximal (see [2, Chapter 11]).
2.1. Equivalent definitions for joint transitivity. The following lemma provides a couple of equivalent definitions for joint transitivity. We will use this lemma implicitly throughout this paper. Its proof is a direct generalization of [36, Lemma 2.8] (see also [28, Lemma 2.4] and [35]).

Lemma 2.1. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal \mathbb{Z}^{k}-system and $\left(a_{1}(n)\right)_{n}, \ldots,\left(a_{d}(n)\right)_{n}$ be sequences with values in \mathbb{Z}^{k}. The following are equivalent:
(i) There exists a dense G_{δ} subset Ω of X such that the set

$$
\left\{\left(S_{a_{1}(n)} x, \ldots, S_{a_{d}(n)} x\right): n \in \mathbb{Z}\right\}
$$

is dense in X^{d} for every $x \in \Omega$.
(ii) There exists some $x \in X$ such that the set

$$
\left\{\left(S_{a_{1}(n)} x, \ldots, S_{a_{d}(n)} x\right): n \in \mathbb{Z}\right\}
$$

is dense in X^{d}.
(iii) For every non-empty open subsets U, V_{1}, \ldots, V_{d} of X, there is some $n \in \mathbb{Z}$ such that

$$
U \cap S_{-a_{1}(n)} V_{1} \cap \cdots \cap S_{-a_{d}(n)} V_{d} \neq \emptyset .
$$

Proof. The implication $(i) \Rightarrow(i i)$ is obvious. We next prove that (ii) implies (iii). To this end, let $x \in X$ be such that the set

$$
\left\{\left(S_{a_{1}(n)} x, \ldots, S_{a_{d}(n)} x\right): n \in \mathbb{Z}\right\}
$$

is dense in X^{d}. Then, for any $m \in \mathbb{Z}^{k}$, the set

$$
X(x, m):=\left\{\left(S_{a_{1}(n)+m} x, \ldots, S_{a_{d}(n)+m} x\right): n \in \mathbb{Z}\right\}
$$

is also dense in X^{d}. Now, for any non-empty open subsets U, V_{1}, \ldots, V_{d} of X, by the minimality of $\left(X, S_{1}, \ldots, S_{k}\right)$, we may find some $m \in \mathbb{Z}^{k}$ such that $S_{m} x \in U$, and since $X(x, m)$ is dense in X^{d}, there exists $n \in \mathbb{Z}$ such that $S_{a_{i}(n)+m} x \in V_{i}$ for all $1 \leq i \leq d$. Therefore, the set

$$
U \cap S_{-a_{1}(n)} V_{1} \cap \cdots \cap S_{-a_{d}(n)} V_{d}
$$

contains the point $T_{m} x$, hence it is non-empty.
It remains to show that (iii) implies (i). Let \mathcal{F} be a countable basis of the topology of X and define

$$
\Omega:=\bigcap_{V_{1}, \ldots, V_{d} \in \mathcal{F}} \bigcup_{n \in \mathbb{Z}} S_{-a_{1}(n)} V_{1} \cap \cdots \cap S_{-a_{d}(n)} V_{d}
$$

It follows from (iii) that Ω is a dense G_{δ} set. Moreover, the set

$$
\left\{\left(S_{a_{1}(n)} x, \ldots, S_{a_{d}(n)} x\right): n \in \mathbb{Z}\right\}
$$

is dense in X^{d} for every $x \in \Omega$.
2.2. Dynamical cubes and regionally proximal relations. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a system and $\left(G_{1}, G_{2}\right)$ be a pair of subgroups of \mathbb{Z}^{k}. Define the space of $\left(G_{1}, G_{2}\right)$-cubes as

$$
\boldsymbol{Q}_{G_{1}, G_{2}}(X):=\overline{\left\{\left(x, S_{g_{1}} x, S_{g_{2}} x, S_{g_{1}+g_{2}} x\right): x \in X, g_{1} \in G_{1}, g_{2} \in G_{2}\right\}} \subseteq X^{4} .
$$

(Remark that such definitions were initially introduced in [17], for the case where each G_{i} is generated by a single transformation.) Given $x \in X$, and $\left(G_{1}, G_{2}\right)$, let

$$
\overline{\mathcal{F}_{G_{1}, G_{2}}}(x):=\overline{\left\{\left(S_{g_{1}} x, S_{g_{2}} x, S_{g_{1}+g_{2}} x\right): g_{1} \in G_{1}, g_{2} \in G_{2}\right\}} \subseteq X^{3} .
$$

When G_{i} is generated by a single element g_{i} we write $\boldsymbol{Q}_{G_{i}, G_{i}}(X)$ simply as $\boldsymbol{Q}_{S_{g_{i}}, S_{g_{i}}}(X)$; a similar notation is used for $\overline{F_{G_{i}, G_{i}}}(x)$. Given a single subgroup G of \mathbb{Z}^{k}, we write

$$
\mathbf{R P}_{G}(X):=\overline{\left\{\left(x, S_{g} x\right): x \in X, g \in G\right\}} \subseteq X^{2}
$$

(this relation is coined the prolongation relation in [3]). Note that if $\left(X,\left(S_{m}\right)_{m \in G}\right)$ is transitive (meaning that there exists a point x such that $\left\{S_{m} x: m \in G\right\}$ is dense in X), then $\mathbf{R P}_{G}(X)=$ $X \times X$. Similarly to [17] (or [26] for the case of a \mathbb{Z}-action), we define the relation $\mathbf{R P}_{G_{1}, G_{2}}(X)$ as the set of points $(x, y) \in X^{2}$ such that $(x, y, y, y) \in \boldsymbol{Q}_{G_{1}, G_{2}}(X)$. It should be noted that if (X, G) is minimal, then $\mathbf{R P}_{G, G}(X)$ is nothing more than the classical regionally proximal relation (see [2, Chapter 9] for more information on this relation).

We need the following lemma.
Lemma 2.2. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system and G_{1}, G_{2} be subgroups of \mathbb{Z}^{k}.
(i) Let $\sigma: X^{4} \rightarrow X^{4}$ be the map with $\sigma(a, b, c, d):=(a, c, b, d)$. Then $\sigma\left(\boldsymbol{Q}_{G_{1}, G_{2}}(X)\right)=\boldsymbol{Q}_{G_{2}, G_{1}}(X)$.
(ii) Consider the system $\left(\mathbf{R P}_{G_{1}}(X), G_{2}^{(2)}\right)$, where $G_{2}^{(2)}$ is the action given by $g(x, y)=(g x, g y)$, for all $g \in G_{2}$ and $(x, y) \in X^{2} .{ }^{4}$ Then $\mathbf{R P}_{G_{2}^{(2)}}\left(\mathbf{R} \mathbf{P}_{G_{1}}(X)\right)=\boldsymbol{Q}_{G_{1}, G_{2}}(X)$.
(iii) If H is a subgroup of \mathbb{Z}^{k}, and $\mathbf{R} \mathbf{P}_{G_{1}}(X)=\mathbf{R} \mathbf{P}_{G_{2}}(X)$, then $\boldsymbol{Q}_{G_{1}, H}(X)=\boldsymbol{Q}_{G_{2}, H}(X)$.
(iv) If $G_{1}^{\prime}, G_{2}^{\prime}$ and G_{1}, G_{2} are subgroups of \mathbb{Z}^{k} such that $G_{1}^{\prime} \subseteq G_{1}$, and $G_{2}^{\prime} \subseteq G_{2}$, then $\boldsymbol{Q}_{G_{1}^{\prime}, G_{2}^{\prime}}(X)$ $\subseteq \boldsymbol{Q}_{G_{1}, G_{2}}(X)$.

[^2]Proof. (i) and (iv) follow directly from the definitions.
To show ($i i$), first note that for all $x \in X, g_{1} \in G_{1}$, and $g_{2} \in G_{2}$, the point $\left(x, S_{g_{1}} x, S_{g_{2}} x, S_{g_{1}+g_{2}} x\right)$ belongs to $\mathbf{R} \mathbf{P}_{G_{2}^{(2)}}\left(\mathbf{R} \mathbf{P}_{G_{1}}(X)\right)$ (here we naturally identify this point with $\left(\left(x, S g_{1} x\right),\left(S_{g_{2}} x, S_{g_{1}+g_{2}} x\right)\right)$). Therefore, $\boldsymbol{Q}_{G_{1}, G_{2}}(X) \subseteq \mathbf{R P}_{G_{2}^{(2)}}\left(\mathbf{R P}_{G_{1}}(X)\right)$. For the converse inclusion, it suffices to show that for any $(x, y) \in \mathbf{R P}_{G_{1}}(X)$ and any $g_{2} \in G_{2}$, we have $\left(x, y, S_{g_{2}} x, S_{g_{2}} y\right) \in \boldsymbol{Q}_{G_{1}, G_{2}}(X)$. Let $\epsilon>0$ and choose $0<\delta<\epsilon$ so that if $z, z^{\prime} \in X$ and $\rho\left(z, z^{\prime}\right)<\delta$, then $\rho\left(S_{g_{2}} z, S_{g_{2}} z^{\prime}\right)<\epsilon$. We can find $x^{\prime} \in X$ and $g_{1} \in G_{1}$ such that $\rho\left(\left(x^{\prime}, S_{g_{1}} x^{\prime}\right),(x, y)\right)<\delta$. It follows that ($\left.x^{\prime}, S_{g_{1}} x^{\prime}, S_{g_{2}} x^{\prime}, S_{g_{1}+g_{2}} x^{\prime}\right)$ is at distance at most ϵ of $\left(x, y, S_{g_{2}} x, S_{g_{2}} y\right)$. Since $\epsilon>0$ is arbitrary, we conclude that $\left(x, y, S_{g_{2}} x, S_{g_{2}} y\right) \in \boldsymbol{Q}_{G_{1}, G_{2}}(X)$, as desired.
(iii) follows immediately from (ii).

Corollary 2.3. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system and let $G \subseteq \mathbb{Z}^{k}$ be a subgroup such that $\left(X,\left(S_{m}\right)_{m \in G}\right)$ is transitive. Then, for any subgroup H of \mathbb{Z}^{k}, we have $\boldsymbol{Q}_{G, H}(X)=\boldsymbol{Q}_{\mathbb{Z}^{k}, H}(X)$. In particular, $\mathbf{R P}_{G, G}(X)=\mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$.

Proof. Note that by Lemma 2.2 (iv), the inclusion $\boldsymbol{Q}_{G, H}(X) \subseteq \boldsymbol{Q}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$ always holds. In addition, if G is transitive, since $\mathbf{R P}_{G}(X)=X \times X=\mathbf{R P}_{\mathbb{Z}^{k}}(X)$, Lemma 2.2 (iii) implies that $\boldsymbol{Q}_{G, H}(X)=\boldsymbol{Q}_{\mathbb{Z}^{k}, H}(X)$. Using (i) and (iii) of Lemma 2.2, we get $\boldsymbol{Q}_{G, G}(X)=\boldsymbol{Q}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$, from where $\mathbf{R P}_{G, G}(X)=\mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$.

We remark that Corollary 2.3 could also be deduced by using a proof similar to that of [17, Lemma 6.13].

The following theorem is classical (see, for instance, [2]).
Theorem 2.4. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal system. Then $\mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$ is an equivalence relation, the system $X / \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}$ is the maximal equicontinuous factor of X, and this factor is topologically conjugate to a rotation on a compact abelian group.
2.3. The O-diagram. The following is a classical theorem in the structural theory of topological dynamical systems and will be very useful for our purposes. We state a version for \mathbb{Z}^{k}, giving only the information we need for our work. We note that this theorem is valid for general group actions. For further details, the interested reader may consult [10, Chapter VI, Section 3] or [2, Chapter 14].

Theorem 2.5. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ and $\left(Y, R_{1}, \ldots, R_{k}\right)$ be two \mathbb{Z}^{k}-minimal systems and $\pi: X \rightarrow Y$ a factor map. Then there exist two \mathbb{Z}^{k}-minimal systems $\left(\tilde{X}, \tilde{S}_{1}, \ldots, \tilde{S}_{k}\right)$ and $\left(\tilde{Y}, \tilde{R}_{1}, \ldots, \tilde{R}_{k}\right)$ and factor maps $\tilde{\pi}: \tilde{X} \rightarrow X, \tilde{\sigma}: \tilde{X} \rightarrow X, \tilde{\tau}: \tilde{Y} \rightarrow Y$ such that the following diagram (which is called the O-diagram)

is commutative, $\tilde{\sigma}$ and $\tilde{\tau}$ are almost one-to-one, and $\tilde{\pi}$ is open.
Theorem 2.5 says that, modulo almost one-to-one extensions, we may assume that the factor map is open.

3. The proof of the main result

3.1. A characterization for the regional proximal relation for product transformations.

The following is the main tool we use in the proof of Theorem 1.6 and can be interpreted as a topological analogue of seminorm control estimates in product spaces (see [15, Lemma 5.2] or [12, Lemma 3.4] for analogous statements in the measurable setting).

Theorem 3.1. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system and $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$. Let $\left(Y_{i}, S_{1}, \ldots, S_{k}\right)$, $1 \leq i \leq d$ be factors of X, such that for all i, the factor map $\pi_{i}: X \rightarrow Y_{i}$ is open, and $R_{\pi_{i}} \subseteq$ $\mathbf{R P}_{T_{i}, T_{i}}(X)$. For all $1 \leq i \leq d$, let $\left(x_{i}, y_{i}\right) \in R_{\pi_{i}}$. Then

$$
\left(\left(x_{1}, \ldots, x_{d}\right),\left(y_{1}, \ldots, y_{d}\right)\right) \in \mathbf{R P}_{T_{1} \times \cdots \times T_{d}}\left(X^{d}\right)
$$

Interpreting appropriately the coordinates, this can be stated as " $\mathbf{R P}_{T_{1}, T_{1}}(X) \times \cdots \times \mathbf{R P}_{T_{d}, T_{d}}(X) \subseteq$ $\mathbf{R P}_{T_{1} \times \cdots \times T_{d}}\left(X^{d}\right) . "$

We need some lemmas before proving Theorem 3.1. The following lemma can be deduced from the proof of [27, Theorem 7.3.2], or using [39]. We give a proof for completeness.

Lemma 3.2. Let (X, T) be a \mathbb{Z}-system and let $x, y \in X$ be such that $(x, y, x) \in \overline{\mathcal{F}_{T, T}}(x)$. Then for any open neighborhood U of y, there is a sequence $\left(a_{i}\right)_{i \in \mathbb{N}} \subseteq \mathbb{Z}$ of integers infinitely many values such that the set $\left\{n \in \mathbb{Z}: T^{n} x \in U\right\}$ contains $\left\{a_{j}-a_{i}: j>i\right\}$.

Proof. Let $\epsilon>0$ be such that $B(y, \epsilon) \subseteq U$. For $i \in \mathbb{N}$, set $\epsilon_{i}=\epsilon / 2^{i}$. Construct a sequence $\left(\delta_{i}\right)_{i \in \mathbb{N}}$, with $0<\delta_{i}<\epsilon_{i}$ and a sequence $\left(m_{i}, n_{i}\right)_{i \in \mathbb{N}}$ in $\mathbb{Z} \times \mathbb{Z}$ as follows: Let n_{1}, m_{1} be such that $\rho\left(T^{n_{1}} x, x\right)<\epsilon_{1}, \rho\left(T^{m_{1}} x, y\right)<\epsilon_{1}$, and $\rho\left(T^{n_{1}+m_{1}} x, x\right)<\epsilon_{1}$. Pick $0<\delta_{2}<\epsilon_{2}$ such that $\rho\left(z, z^{\prime}\right)<\delta_{2}$ implies that $\rho\left(T^{a} z, T^{a} z^{\prime}\right)<\epsilon_{2}$ for all $|a| \leq\left|n_{1}\right|+\left|m_{1}\right|$. Take n_{2}, m_{2} such that $\rho\left(T^{n_{2}} x, x\right)<\delta_{2}$, $\rho\left(T^{m_{2}} x, y\right)<\delta_{2}$ and $\rho\left(T^{n_{2}+m_{2}} x, x\right)<\delta_{2}$. (We highlight here that the numbers n_{2}, m_{2} can be taken to be arbitrarily large.) Note that the definition of δ_{2} implies that:

$$
\begin{aligned}
& \rho\left(T^{n_{2}+n_{1}} x, x\right)<\epsilon_{1}+\epsilon_{2}, \rho\left(T^{n_{2}+n_{1}+m_{1}} x, x\right)<\epsilon_{1}+\epsilon_{2}, \rho\left(T^{n_{2}+m_{2}+n_{1}} x, x\right)<\epsilon_{1}+\epsilon_{2}, \\
& \quad \rho\left(T^{n_{2}+m_{2}+n_{1}+m_{1}} x, x\right)<\epsilon_{1}+\epsilon_{2}, \rho\left(T^{n_{2}+m_{1}} x, y\right)<\epsilon_{1}+\epsilon_{2}, \text { and } \rho\left(T^{n_{2}+m_{2}+m_{1}} x, y\right)<\epsilon_{1}+\epsilon_{2} .
\end{aligned}
$$

So, if we set $R_{1}=\left\{n_{1}, n_{1}+m_{1}\right\}, P_{1}=\left\{m_{1}\right\}, R_{2}=\left\{n_{2}, n_{2}+m_{2}\right\}$, we have that $\rho\left(T^{a+b} x, x\right)<\epsilon_{1}+\epsilon_{2}$ for all $a \in R_{2}$ and $b \in R_{1}$, and $\rho\left(T^{a+c} x, y\right)<\epsilon_{1}+\epsilon_{2}$ for all $a \in R_{2}$ and $c \in P_{1}$ (here R stands for "return" and P for "passage").

The idea of the proof is that return times associated with large indices are compatible with return times and passages associated with smaller indices. More precisely, inductively, suppose that we have defined δ_{i}, m_{i} and n_{i} for all $1 \leq i \leq l$ for some $l \in \mathbb{N}$, and for the set $R_{i}=\left\{n_{i}, n_{i}+m_{i}\right\}$ and $P_{i}=\left\{m_{i}\right\}$ we have that if $a=r_{j_{1}}+\cdots+r_{j_{l}}$, with $r_{j_{k}} \in R_{j_{k}}, j_{1}<\ldots<j_{l}$, then $\rho\left(T^{a} x, x\right)<\sum_{t=1}^{l} \epsilon_{j_{t}}$, and $\rho\left(T^{a+c} x, y\right)<\epsilon_{k}+\sum_{t=1}^{l} \epsilon_{j_{t}}$ if $c \in P_{k}, k<j_{1}$.

Let $0<\delta_{i+1}<\epsilon_{i+1}$ be such that $\rho\left(z, z^{\prime}\right)<\delta_{i+1}$ implies that $\rho\left(T^{a} z, T^{a} z^{\prime}\right)<\epsilon_{i+1}$ for all $|a| \leq\left|n_{1}\right|+\left|m_{1}\right|+\cdots+\left|n_{i}\right|+\left|m_{i}\right|$. Then choose n_{i+1} and m_{i+1} such that $\rho\left(T^{n_{i+1}} x, x\right)<\delta_{i+1}$, $\rho\left(T^{n_{i+1}+m_{i+1}} x, x\right)<\delta_{i+1}$, and $\rho\left(T^{m_{i+1}} x, y\right)<\delta_{i+1}$, and set $R_{i+1}=\left\{n_{i+1}, n_{i+1}+m_{i+1}\right\}, P_{i+1}=$ $\left\{m_{i+1}\right\}$.

We claim that if $a=r_{j_{1}}+r_{j_{2}}+\cdots+r_{j_{l}}$, with $r_{j_{k}} \in R_{j_{k}}, j_{1}<\ldots<j_{l} \leq i+1$, then $\rho\left(T^{a} x, x\right)<$ $\sum_{t=1}^{l} \epsilon_{j_{t}}$, and $\rho\left(T^{a+c} x, y\right)<\epsilon_{k}+\sum_{t=1}^{l} \epsilon_{j_{t}}$ if $c \in P_{k}, k<j_{1}$.

We only need to check the case $j_{l}=i+1$. Assume that $r_{i+1}=n_{i+1}$ (the case $r_{i+1}=n_{i+1}+m_{i+1}$ is identical). Since $\rho\left(T^{n_{i+1}} x, x\right)<\delta_{i+1}$, and $\left|a-n_{i+1}\right| \leq\left|n_{1}\right|+\left|m_{1}\right|+\cdots+\left|n_{i}\right|+\left|m_{i}\right|$, we get
$\rho\left(T^{a} x, T^{a-n_{i+1}} x\right)<\epsilon_{i+1}$. By induction, $\rho\left(T^{a-n_{i+1}} x, x\right)<\sum_{t=1}^{l-1} \epsilon_{j_{t}}$, so the triangle inequality implies that $\rho\left(T^{a} x, x\right)<\sum_{t=1}^{l} \epsilon_{j_{t}}$, as desired. The estimate of $\rho\left(T^{a+c} x, y\right)$ follows in a similar way.

Now set $a_{i}=n_{i+1}+\sum_{j=1}^{i}\left(n_{j}+m_{j}\right)$. Note that we may further require the sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ to take infinitely many values (by choosing the n_{i} 's and m_{i} 's to go to infinity) and $a_{i+l}-a_{i}=$ $n_{i+l+1}+\sum_{j=i+2}^{i+l}\left(n_{j}+m_{j}\right)+m_{i+1}$. Hence, we can rewrite this as $a_{i+l}-a_{i}=r_{i+l+1}+\sum_{j=i+2}^{i+l} r_{j}+c$, where $r_{j} \in R_{j}$ and $c \in P_{i+1}$. It follows from the construction of the sequence $\left\{n_{i}, m_{i}: i \in \mathbb{N}\right\}$ that $\rho\left(T^{a_{i+l}-a_{i}} x, y\right)<\sum_{t=i+1}^{i+l+1} \epsilon_{i}<\epsilon$, which implies that $T^{a_{i+l}-a_{i}} x \in U$, as was to be shown.

Lemma 3.3. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal \mathbb{Z}^{k}-system, $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$ and $\pi: X \rightarrow Y$ an open factor map with $R_{\pi} \subseteq \mathbf{R P}_{T_{i}, T_{i}}(X)$ for some $1 \leq i \leq d$. Let $x_{1}, \ldots, x_{d}, x_{i}^{\prime} \in X$ with $\left(x_{i}, x_{i}^{\prime}\right) \in R_{\pi}$, and U_{z} be a neighborhood of z for $z=x_{1}, \ldots, x_{d}, x_{i}^{\prime}$. There exist $n \in \mathbb{Z}$ such that $T_{i}^{n} U_{x_{i}} \cap U_{x_{i}^{\prime}} \neq \emptyset$ and $T_{j}^{n} U_{x_{j}} \cap U_{x_{j}} \neq \emptyset$ for all $1 \leq j \leq d, j \neq i$.

Proof. The set Ω_{i} of $\tilde{x} \in X$ such that the set $\left\{(a, b, c):(\tilde{x}, a, b, c) \in \boldsymbol{Q}_{T_{i}, T_{i}}(X)\right\}$ equals $\overline{\mathcal{F}_{T_{i}, T_{i}}}(\tilde{x})$ is a dense G_{δ}-set of points (see, for instance, [25, Lemma 4.5]). Since π is open, we can find $\tilde{x} \in U_{x_{i}} \cap \Omega_{i}$ and $\tilde{y} \in U_{x_{i}^{\prime}}$ with $(\tilde{x}, \tilde{y}) \in R_{\pi}$. Because $R_{\pi} \subseteq \mathbf{R P}_{T_{i}, T_{i}}(X)$, we have $(\tilde{x}, \tilde{y}, \tilde{x}) \in \overline{\mathcal{F}_{T_{i}, T_{i}}}(\tilde{x})$ and by Lemma 3.2, the set $\left\{n \in \mathbb{Z}: T_{i}^{n} \tilde{x} \in U_{x_{i}^{\prime}}\right\}$ contains a set of the form $\left\{a_{j}-a_{j}^{\prime}: j>j^{\prime}\right\}$ for some \mathbb{Z}-valued sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ taking infinitely many values. In particular, the same is true for the set $\left\{n \in \mathbb{Z}: T_{i}^{n} U_{x_{i}} \cap U_{x_{i}^{\prime}} \neq \emptyset\right\}$. Let μ be a \mathbb{Z}^{k}-invariant measure on X. By the minimality of $\left\langle S_{1}, \ldots, S_{k}\right\rangle$, μ has full support. Consider the product system $\left(X_{1} \times \cdots \times X_{d}, \mathcal{B}(X)^{\otimes d}, \mu^{\otimes d}, T_{1} \times \cdots \times T_{d}\right)$ and $U=U_{1} \times \cdots \times U_{d}$. Then $\mu^{\otimes d}(U)>0$, and so by the proof of the Poincaré recurrence theorem, the set $\left\{n \in \mathbb{Z}: \mu^{\otimes d}\left(U \cap\left(T_{1} \times \cdots \times T_{d}\right)^{-n} U\right)>0\right\}$ must intersect non-trivially every set of the form $\left\{a_{j}-a_{j}^{\prime}: j>j^{\prime}\right\}$, which takes infinitely many values. This implies that it has non-empty intersection with $\left\{n \in \mathbb{Z}: T_{i}^{n} U_{x_{i}} \cap U_{x_{i}^{\prime}} \neq \emptyset\right\}$, as desired.
Proof of Theorem 3.1. Fix $\epsilon>0$ and set $\epsilon_{d}:=\epsilon$. Suppose that we have constructed $\epsilon_{r+1}, \ldots, \epsilon_{d}>0$ for some $1 \leq r \leq d-1$. We let $0<\epsilon_{r}<\epsilon_{r+1} / 2$ to be a number such that for any $z_{r+1} \in X$ with $\rho\left(y_{r+1}, z_{r+1}\right)<\epsilon_{r}$, there exists $x_{r+1}^{\prime} \in X$ with $\rho\left(x_{r+1}^{\prime}, x_{r+1}\right)<\epsilon_{r+1} / 2$ such that $\left(x_{r+1}^{\prime}, z_{r+1}\right) \in$ $R_{\pi_{r+1}}$. The existence of such ϵ_{r} follows from the assumptions that $\left(x_{r+1}, y_{r+1}\right) \in R_{\pi_{r+1}}$, the map $X \mapsto Y_{r+1}=X / R_{\pi_{r+1}}$ is open.

For $1 \leq r \leq d$, we say that Property r holds if there exist $z_{1}, \ldots, z_{d} \in X$ and $n \in \mathbb{Z}$ such that

- $\rho\left(x_{i}, z_{i}\right)<\epsilon_{r}$ for all $1 \leq i \leq r$;
- $\rho\left(y_{i}, z_{i}\right)<\epsilon_{r}$ for all $r+1 \leq i \leq d$;
- $\rho\left(y_{i}, T_{i}^{n} z_{i}\right)<\epsilon_{r}$ for all $1 \leq i \leq d$.

By Lemma 3.3, Property 1 holds. Now suppose that Property r holds for some $1 \leq r \leq d-1$. Since $\left(x_{r+1}, y_{r+1}\right) \in R_{\pi_{r+1}}$ and $\rho\left(y_{r+1}, z_{r+1}\right)<\epsilon_{r}$, by the construction of ϵ_{r}, there exists $x_{r+1}^{\prime} \in X$ with $\rho\left(x_{r+1}^{\prime}, x_{r+1}\right)<\epsilon_{r+1} / 2$ such that $\left(x_{r+1}^{\prime}, z_{r+1}\right) \in R_{\pi_{r+1}}$. Let $\delta^{\prime}:=\min \left\{\epsilon_{r+1} / 2, \epsilon_{r+1}-\epsilon_{r}\right\}$. Take $0<\delta<\delta^{\prime}$ such that for all $x, y \in X$, if $\rho(x, y)<\delta$, then $\rho\left(T^{n} x, T^{n} y\right)<\delta^{\prime}$ (n is the one from Property r above). By Lemma 3.3, there exist $z_{1}^{\prime}, \ldots, z_{d}^{\prime} \in X$ and $n^{\prime} \in \mathbb{Z}$ such that

- $\rho\left(z_{i}, z_{i}^{\prime}\right)<\delta$ for all $1 \leq i \leq d, i \neq r+1$;
- $\rho\left(z_{i}, T_{i}^{n^{\prime}} z_{i}^{\prime}\right)<\delta$ for all $1 \leq i \leq d, i \neq r+1$;
- $\rho\left(x_{r+1}^{\prime}, z_{r+1}^{\prime}\right)<\delta$;
- $\rho\left(z_{r+1}, T_{r+1}^{n^{\prime}} z_{r+1}^{\prime}\right)<\delta$.

Then for all $1 \leq i \leq r$,

$$
\rho\left(x_{i}, z_{i}^{\prime}\right) \leq \rho\left(x_{i}, z_{i}\right)+\underset{8}{\rho\left(z_{i}, z_{i}^{\prime}\right)<\epsilon_{r}+\delta \leq \epsilon_{r+1} .}
$$

For all $r+2 \leq i \leq d$,

$$
\rho\left(y_{i}, z_{i}^{\prime}\right) \leq \rho\left(y_{i}, z_{i}\right)+\rho\left(z_{i}, z_{i}^{\prime}\right)<\epsilon_{r}+\delta \leq \epsilon_{r+1} .
$$

Moreover,

$$
\rho\left(x_{r+1}, z_{r+1}^{\prime}\right) \leq \rho\left(x_{r+1}, x_{r+1}^{\prime}\right)+\rho\left(x_{r+1}^{\prime}, z_{r+1}^{\prime}\right)<\epsilon_{r+1} / 2+\delta \leq \epsilon_{r+1} .
$$

On the other hand, for all $1 \leq i \leq d, i \neq r+1$, since $\rho\left(z_{i}, T_{i}^{n^{\prime}} z_{i}\right)<\delta$, we have $\rho\left(T_{i}^{n} z_{i}, T_{i}^{n+n^{\prime}} z_{i}\right)<\delta^{\prime}$ and so

$$
\rho\left(y_{i}, T_{i}^{n+n^{\prime}} z_{i}\right) \leq \rho\left(y_{i}, T_{i}^{n} z_{i}\right)+\rho\left(T_{i}^{n} z_{i}, T_{i}^{n+n^{\prime}} z_{i}\right)<\epsilon_{r}+\delta^{\prime} \leq \epsilon_{r+1} .
$$

Finally, since $\rho\left(z_{r+1}, T_{r+1}^{n^{\prime}} z_{r+1}\right)<\delta$, we have that $\rho\left(T_{r+1}^{n} z_{r+1}, T_{r+1}^{n+n^{\prime}} z_{r+1}\right)<\delta^{\prime}$ and so

$$
\rho\left(y_{r+1}, T_{r+1}^{n+n^{\prime}} z_{r+1}\right) \leq \rho\left(y_{r+1}, T_{r+1}^{n} z_{r+1}\right)+\rho\left(T_{r+1}^{n} z_{r+1}, T_{r+1}^{n+n^{\prime}} z_{r+1}\right)<\epsilon_{r}+\delta^{\prime} \leq \epsilon_{r+1} .
$$

In conclusion, we have that that Property $r+1$ holds.
So it follows from induction that Property d holds, which means that there exist $\left(z_{1}, \ldots, z_{d}\right) \in X^{d}$ and $n \in \mathbb{Z}$ such that

$$
\rho\left(\left(x_{1}, \ldots, x_{d}\right),\left(z_{1}, \ldots, z_{d}\right)\right)<\epsilon \text { and } \rho\left(\left(y_{1}, \ldots, y_{d}\right),\left(T_{1}^{n} z_{1}, \ldots, T_{d}^{n} z_{d}\right)\right)<\epsilon .
$$

Since ϵ is arbitrary, we have that $\left(\left(x_{1}, \ldots, x_{d}\right),\left(y_{1}, \ldots, y_{d}\right)\right) \in \mathbf{R P}_{T_{1} \times \cdots \times T_{d}}\left(X^{d}\right)$.
As a consequence of Theorem 3.1, we have:
Proposition 3.4. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal \mathbb{Z}^{k}-system and $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$. Suppose that $\left(X, T_{1}\right), \ldots,\left(X, T_{d}\right)$ are transitive. Then $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive if and only if $\left(Y^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive, where $Y=X / \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$.

Proof. The "only if" part is straightforward. Now assume that $\left(Y^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive. By the O-diagram (Theorem 2.5), we may consider almost one-to-one extensions \tilde{X}, \tilde{Y} of X and Y respectively such that the projection $\tilde{\pi}: \tilde{X} \rightarrow \tilde{Y}$ is open. Note that $\left(\tilde{X}, T_{1}\right), \ldots,\left(\tilde{X}, T_{d}\right)$ and $\left(\tilde{Y}^{d}, T_{1} \times \cdots \times T_{d}\right)$ are also transitive, because this property is preserved under almost one-toone extensions (see [1]). We now show that ($\tilde{X}^{d}, T_{1} \times \cdots \times T_{d}$) is transitive, which implies that $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive.

Note that since \tilde{X} is an almost one-to-one extension of X, we have that $\tilde{X} / \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(\tilde{X})$ and $X / \mathbf{R} \mathbf{P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$ are conjugate, so we have that $R_{\tilde{\pi}}$ is a subset of $\mathbf{R} \mathbf{P}_{T_{i}, T_{i}}(\tilde{X})$ for all i. To see this, by only assuming that $\tilde{\sigma}$ is proximal (which covers the almost one-to-one case), let q be the projection from \tilde{X} to $X / \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$. It suffices to show that $R_{q} \subseteq \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(\tilde{X})$. Let $\tilde{x}, \tilde{x}^{\prime}$ with $q(\tilde{x})=q\left(\tilde{x}^{\prime}\right)$. Then $\left(\tilde{\sigma}(\tilde{x}), \tilde{\sigma}\left(\tilde{x}^{\prime}\right)\right) \in \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$. We can find $\left(\tilde{y}, \tilde{y}^{\prime}\right) \in \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(\tilde{X})$ such that $\left(\tilde{\sigma}(\tilde{y}), \tilde{\sigma}\left(\tilde{y}^{\prime}\right)\right)=\left(\tilde{\sigma}(\tilde{x}), \tilde{\sigma}\left(\tilde{x}^{\prime}\right)\right)$. It follows that $(\tilde{x}, \tilde{y}),\left(\tilde{x}^{\prime}, \tilde{y}^{\prime}\right) \in P(\tilde{X})$ (the proximal relation on $\left.\tilde{X}\right)$. Since $P(\tilde{X}) \subseteq \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(\tilde{X})$, and this is an equivalence relation, we conclude $\left(\tilde{x}, \tilde{x}^{\prime}\right) \in \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(\tilde{X}) .{ }^{5}$

Let U, V be nonempty open subsets of \tilde{X}^{d}. Then $\tilde{\pi}^{\times d}(U)$ and $\tilde{\pi}^{\times d}(V)$ are nonempty open sets, where $\tilde{\pi}^{\times d}:=\pi \times \cdots \times \pi(d$-times $)$. Since $\left(\tilde{Y}^{d}, S_{1} \times \cdots \times S_{d}\right)$ is transitive, there exist $\left(x_{1}, \ldots, x_{d}\right) \in U$ and $n \in \mathbb{Z}$ such that $\tilde{\pi}^{\times d}\left(T_{1}^{n} x_{1}, \ldots, T_{d}^{n} x_{d}\right) \in \tilde{\pi}^{\times d}(V)$. That is, there exists $\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right) \in V$ such that $\left(T_{i}^{n} x_{i}, x_{i}^{\prime}\right) \in R_{\tilde{\pi}}(\tilde{X})$ for all $1 \leq i \leq d$. Let $\epsilon>0$ be such that $B\left(\left(x_{1}, \ldots, x_{d}\right), \epsilon\right) \subseteq U$ and $B\left(\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right), \epsilon\right) \subseteq V$. Take $\delta>0$ so that $\rho(a, b)<\delta$ implies $\rho\left(T_{i}^{-n} a, T_{i}^{-n} b\right)<\epsilon$ for $1 \leq$ $i \leq d$. By Theorem 3.1, as $R_{\tilde{\pi}}(\tilde{X}) \subseteq \mathbf{R P}_{T_{i}, T_{i}}(\tilde{X})$, we obtain $\left(\left(T_{1}^{n} x_{1}, \ldots, T_{d}^{n} x_{d}\right),\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right)\right) \in$ $\mathbf{R P}_{T_{1} \times \cdots \times T_{d}}\left(\tilde{X}^{d}\right)$. Therefore, there exist $\left(y_{1}, \ldots, y_{d}\right) \in \tilde{X}^{d}$ and $m \in \mathbb{Z}$ such that $\rho\left(\left(y_{1}, \ldots, y_{d}\right)\right.$,

[^3]$\left.\left(T_{1}^{n} x_{1}, \ldots, T_{d}^{n} x_{d}\right)\right)<\delta$ and $\rho\left(\left(T_{1}^{m} y_{1}, \ldots, T_{d}^{m} y_{d}\right),\left(x_{1}^{\prime}, \ldots, x_{d}^{\prime}\right)\right)<\delta$. It follows that $\left(T_{1}^{-n} y_{1}, \ldots\right.$, $\left.T_{d}^{-n} y_{d}\right) \in U$ and $\left(T_{1}^{m+n} T_{1}^{-n} y_{1}, \ldots, T_{d}^{m+n} T_{d}^{-n} y_{d}\right) \in V$. Using Lemma 2.1, we conclude that $\left(\tilde{X}^{d}, T_{1} \times\right.$ $\left.\cdots \times T_{d}\right)$ is transitive.
3.2. The proof of Theorem 1.6. In this last subsection, we prove Theorem 1.6. We start with its forward direction, which is almost straightforward.

Proof of the forward direction of Theorem 1.6. We use Lemma 2.1 implicitly throughout the proof. Assume that $\left(T_{1}^{n}\right)_{n}, \ldots,\left(T_{d}^{n}\right)_{n}$ are jointly transitive. Equivalently, for all V_{0}, \ldots, V_{d} nonempty and open subsets of X, there exists $n \in \mathbb{Z}$ such that

$$
\begin{equation*}
V_{0} \cap T_{1}^{-n} V_{1} \cap \cdots \cap T_{d}^{-n} V_{d} \neq \emptyset \tag{3}
\end{equation*}
$$

To show (i), pick any $i \neq j$, and let U_{0}, U_{1} be non-empty opens sets. Setting $V_{i}=U_{0}, V_{j}=$ U_{1} and $V_{k}=X$ for all $k \in\{0, \ldots, d\} \backslash\{i, j\}$, it follows from (3) that $T_{i}^{-n} V_{i} \cap T_{j}^{-n} V_{j} \neq \emptyset$, or $U_{0} \cap\left(T_{i}^{-1} T_{j}\right)^{-n} U_{1} \neq \emptyset$. To show $(i i)$, pick any point x for which $\left\{\left(T_{1}^{n} x, \ldots, T_{d}^{n} x\right): n \in \mathbb{Z}\right\}$ is dense in X. Then the point (x, \ldots, x) is a transitive point for $T_{1} \times \cdots \times T_{d}$.

It remains to show the inverse direction of Theorem 1.6. To this end, we first need a couple of statements. In particular, the first one will allow us to run an inductive argument.

Proposition 3.5. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a minimal \mathbb{Z}^{k}-system, $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$, and $R_{2}:=T_{2} T_{1}^{-1}, \ldots, R_{d}:=T_{d} T_{1}^{-1}$. If $\left(X, R_{2}\right), \ldots,\left(X, R_{d}\right)$ and $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ are transitive, then $\left(X^{d-1}, R_{2} \times \cdots \times R_{d}\right)$ is transitive.

Proof. Since $\left(X, R_{2}\right), \ldots,\left(X, R_{d}\right)$ are transitive, by Corollary 2.3 , we have $\mathbf{R P}_{R_{2}, R_{2}}(X)=\ldots=$ $\mathbf{R} \mathbf{P}_{R_{d}, R_{d}}(X)=\mathbf{R} \mathbf{P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$, which is an equivalence relation since ($\left.X, S_{1}, \ldots, S_{k}\right)$ is minimal. By Proposition 3.4, it suffices to show that $\left(Y^{d-1}, R_{2} \times \cdots \times R_{d}\right)$ is transitive, where $Y=X / \mathbf{R P}_{\mathbb{Z}^{k}, \mathbb{Z}^{k}}(X)$. By Theorem 2.4 we have that $\left(Y, S_{1}, \ldots, S_{k}\right)$ is a rotation on a compact abelian group, so we may write $T_{i}(y)=y+\alpha_{i}$ for $\alpha_{i} \in Y$ for $1 \leq i \leq d$. Since $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive, we get that $\left(Y^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive, hence minimal. (This holds because rotations are distal, and in this class, transitivity and minimality are equivalent conditions-e.g., see [2, Chapters 2 and 5].)

Take $y \in Y$ and $\left(y_{2}, \ldots, y_{d}\right) \in Y^{d-1}$. Since $\left(Y^{d}, T_{1} \times \cdots \times T_{d}\right)$ is minimal, given $\epsilon>0$, there exists n such that $\rho\left(y+n \alpha_{1}, y\right)<\epsilon$, and $\rho\left(y+n \alpha_{i}, y_{i}\right)<\epsilon$, for all $2 \leq i \leq d$. It follows that $\rho\left(y+n\left(\alpha_{i}-\alpha_{1}\right), y_{i}\right)<2 \epsilon$ for all $2 \leq i \leq d$, and since y, y_{2}, \ldots, y_{d} are arbitrary, we get that $\left(Y^{d-1}, R_{2} \times \cdots \times R_{d}\right)$ is minimal. Proposition 3.4 allows us to conclude.

The following lemma is a generalization of [8, Lemma 2.9] (see also [33, Lemma 3]).
Lemma 3.6. Let $\left(X, S_{1}, \ldots, S_{k}\right)$ be a \mathbb{Z}^{k}-system and $T_{1}, \ldots, T_{d} \in\left\langle S_{1}, \ldots, S_{k}\right\rangle$. Let $\left(R_{j}\right)_{1 \leq j \leq N}$ be a finite sequence of continuous maps from X to X. Assume that $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive. Then for all non-empty open sets V_{1}, \ldots, V_{d}, there exists $n_{j} \in \mathbb{Z}, 1 \leq j \leq N$, and for each $1 \leq i \leq d$ a non-empty open subset \tilde{V}_{i} of V_{i} such that

$$
T_{i}^{-n_{j}} R_{j}^{-1} \tilde{V}_{i} \subseteq V_{i} \text { for all } 1 \leq j \leq N, 1 \leq i \leq d
$$

Proof. We use induction on N. Since $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive, there exists $n_{1} \in \mathbb{Z}$ such that $T_{i}^{-n_{1}} R_{1}^{-1} V_{i} \cap V_{i} \neq \emptyset$ for all $1 \leq i \leq d$. Set $\tilde{V}_{i}=V_{i}^{(1)}:=T_{i}^{-n_{1}} R_{1}^{-1} V_{i} \cap V_{i}$. This completes the proof for the case $N=1$.

Now assume that for some $N \geq 2$, we have constructed $n_{1}, \ldots, n_{N-1} \in \mathbb{N}$ with $n_{1}<\ldots<n_{N-1}$, and for each $1 \leq i \leq d$ a sequence of non-empty open sets $V_{i} \supseteq V_{i}^{(1)} \supseteq \ldots \supseteq V_{i}^{(N-1)}$ such that

$$
T_{i}^{-n_{j}} R_{j}^{-1} V_{i}^{(m)} \subseteq V_{i} \text { for all } 1 \leq j \leq m, 1 \leq m \leq N-1,1 \leq i \leq d
$$

Let $U_{i}:=R_{N}^{-1} V_{i}^{(N-1)}$. Since $\left(X^{d}, T_{1} \times \cdots \times T_{d}\right)$ is transitive, there exists $n_{N} \in \mathbb{N}$ with $n_{N}>n_{N-1}$ such that $T_{i}^{-n_{N}} U_{i} \cap V_{i} \neq \emptyset$ for all $1 \leq i \leq d$. This implies that

$$
V_{i} \cap T_{i}^{-n_{N}} R_{N}^{-1} V_{i}^{(N-1)}=V_{i} \cap T_{i}^{-n_{N-1}} U_{i} \neq \emptyset .
$$

Let

$$
V_{i}^{(N)}:=V_{i}^{(N-1)} \cap\left(T_{i}^{-n_{N}} R_{N}^{-1}\right)^{-1} V_{i} .
$$

Then $V_{i}^{(N)} \subseteq V_{i}^{(N-1)}$ is an non-empty open set and $T_{i}^{-n_{N}} R_{N}^{-1} V_{i}^{(N)} \subseteq V_{i}$. Since $V_{i}^{(N)} \subseteq V_{i}^{(N-1)}$, we also have that

$$
T_{i}^{-n_{j}} R_{j}^{-1} V_{i}^{(N)} \subseteq V_{i} \text { for all } 1 \leq j \leq N-1,1 \leq i \leq d
$$

This completes the induction step, and we are done by setting $\tilde{V}_{i}:=V_{i}^{(N)}$.
Proof of the inverse direction of Theorem 1.6. There is nothing to prove when $d=1$. Now we assume that Theorem 1.6 holds for $d-1$ for some $d \geq 2$ and we prove it for d. By Proposition 3.5, conditions (i) and (ii) imply that ($X^{d-1}, T_{2} T_{1}^{-1} \times \cdots \times T_{d} T_{1}^{-1}$) is transitive. On the other hand, we have that $\left(T_{i} T_{1}^{-1}\right)^{-1}\left(T_{j} T_{1}^{-1}\right)=T_{i}^{-1} T_{j}$ is transitive for all $1 \leq i, j \leq d, i \neq j$. So, by induction hypothesis, we have that $\left(\left(T_{2} T_{1}^{-1}\right)^{n}\right)_{n}, \ldots,\left(\left(T_{d} T_{1}^{-1}\right)^{n}\right)_{n}$ are jointly transitive.

For $m=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{Z}^{k}$, let $S_{m} B:=S_{1}^{m_{1}} \ldots . S_{k}^{m_{k}} B$. Let U, V_{1}, \ldots, V_{d} be open and nonempty. We wish to show that there exists $n \in \mathbb{Z}$ such that

$$
U \cap T_{1}^{-n} V_{1} \cap \cdots \cap T_{d}^{-n} V_{d} \neq \emptyset
$$

Since $\left(X, S_{1}, \ldots, S_{k}\right)$ is minimal, there exists a finite set $F \subseteq \mathbb{Z}^{k}$ such that $X=\bigcup_{r \in F} S_{r} U$. By assumption (ii) and Lemma 3.6, there exist non-empty open sets $\tilde{V}_{1}, \ldots, \tilde{V}_{d}$ and for all $r \in F$ some $n_{r} \in \mathbb{Z}$, such that

$$
\left(T_{1} \times \cdots \times T_{d}\right)^{n_{r}}\left(S_{k} \times \cdots \times S_{k}\left(\tilde{V}_{1} \times \cdots \times \tilde{V}_{d}\right)\right) \subseteq V_{1} \times \cdots \times V_{d}
$$

for all $r \in F$. Since $\left(T_{2} T_{1}^{-1}\right)^{n}, \ldots,\left(T_{d} T_{1}^{-1}\right)^{n}$ are jointly transitive, we can find $m=m(F) \in \mathbb{Z}$ such that

$$
\tilde{V}_{1} \cap\left(T_{2} T_{1}^{-1}\right)^{-m} \tilde{V}_{2} \cap \cdots \cap\left(T_{d} T_{1}^{-1}\right)^{-m} \tilde{V}_{d} \neq \emptyset .
$$

Take $x \in \tilde{V}_{1}$ such that $T_{i}^{m} T_{1}^{-m} x \in \tilde{V}_{i}$ for all $2 \leq i \leq d$, and write $y=T_{1}^{-m} x$. Let $r \in F$ be such that $z:=S_{r} y \in U$. Then $T_{i}^{m+n_{r}} z=T_{i}^{m+n_{r}} S_{r} y=T_{i}^{n_{r}} S_{r}\left(T_{i} T_{1}^{-1}\right)^{m} x \in T_{i}^{n_{r}} S_{r}\left(\tilde{V}_{i}\right) \subseteq V_{i}$ for all $1 \leq i \leq d$. It follows that $z \in U \cap T_{1}^{-\left(m+n_{r}\right)} V_{1} \cap \cdots \cap T_{d}^{-\left(m+n_{r}\right)} V_{d}$.

We close this article with the following widely open problem. Due to Theorem 1.6 and recent developments in the theory of topological factors, we believe that there will be numerous results in the joint transitivity problem in the near future.

Problem 3.7. Obtain the analogous to Theorem 1.6 joint transitivity characterizations for iterates that come from polynomial and Hardy field of polynomial growth functions, for which the corresponding results in the measure theoretic setting are known.

Acknowledgments. After sharing our findings with D. Charamaras, F. K. Richter, and K. Tsinas, we were informed that, by using elementary methods, they had obtained a special case of Theorem 1.6. Given the distinct nature of the methods, the two groups have decided not to publish their results together.

References

[1] E. Akin and E. Glasner. Residual properties and almost equicontinuity. J. Anal. Math., 84:243-286, 2001. 9
[2] J. Auslander. Minimal flows and their extensions, volume 153 of North-Holland Mathematics Studies. NorthHolland Publishing Co., Amsterdam, 1988. Notas de Matemática, 122. [Mathematical Notes]. 4, 5, 6, 10
[3] J. Auslander and M. Guerin. Regional proximality and the prolongation. Forum Math., 9(6):761-774, 1997. 5
[4] D. Berend and V. Bergelson. Jointly ergodic measure-preserving transformations. Israel J. Math., 49(4):307-314, 1984. 2
[5] V. Bergelson. Weakly mixing PET. Ergodic Theory Dynam. Systems, 7(3):337-349, 1987. 1
[6] V. Bergelson, A. Leibman, and Y. Son. Joint ergodicity along generalized linear functions. Ergodic Theory Dynam. Systems, 36(7):2044-2075, 2016. 2
[7] V. Bergelson, J. Moreira, and F. K. Richter. Multiple ergodic averages along functions from a Hardy field: Convergence, recurrence and combinatorial applications. Adv. Math., 443:Paper No. 109597, 2024. 1
[8] Y. Cao and S. Shao. Topological mild mixing of all orders along polynomials. Discrete Contin. Dyn. Syst., 42(3):1163-1184, 2022. 3, 10
[9] Q. Chu, N. Frantzikinakis, and B. Host. Ergodic averages of commuting transformations with distinct degree polynomial iterates. Proc. Lond. Math. Soc. (3), 102(5):801-842, 2011. 1
[10] J. de Vries. Elements of topological dynamics, volume 257 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993. 6
[11] S. Donoso, F. Durand, A. Maass, and S. Petite. On automorphism groups of low complexity subshifts. Ergodic Theory Dynam. Systems, 36(1):64-95, 2016. 9
[12] S. Donoso, A. Ferré Moragues, A. Koutsogiannis, and W. Sun. Decomposition of multicorrelation sequences and joint ergodicity. Ergodic Theory Dynam. Systems, 44(2):432-480, 2024. 1, 2, 7
[13] S. Donoso, A. Koutsogiannis, B. Kuca, K. Tsinas, and W. Sun. Joint ergodicity for commuting transformations along hardy field functions (temporary title). In preparation. 2
[14] S. Donoso, A. Koutsogiannis, and W. Sun. Pointwise multiple averages for sublinear functions. Ergodic Theory Dynam. Systems, 40(6):1594-1618, 2020. 1
[15] S. Donoso, A. Koutsogiannis, and W. Sun. Seminorms for multiple averages along polynomials and applications to joint ergodicity. J. Anal. Math., 146(1):1-64, 2022. 1, 2, 7
[16] S. Donoso, A. Koutsogiannis, and W. Sun. Joint ergodicity for functions of polynomial growth. 2023. To appear in Israel Journal of Mathematics. 2
[17] S. Donoso and W. Sun. Dynamical cubes and a criteria for systems having product extensions. J. Mod. Dyn., 9:365-405, 2015. 5, 6
[18] N. Frantzikinakis. Multiple recurrence and convergence for Hardy sequences of polynomial growth. J. Anal. Math., 112:79-135, 2010. 1
[19] N. Frantzikinakis. A multidimensional Szemerédi theorem for Hardy sequences of different growth. Trans. Amer. Math. Soc., 367(8):5653-5692, 2015. 1
[20] N. Frantzikinakis. Joint ergodicity of sequences. Adv. Math., 417:Paper No. 108918, 63, 2023. 1
[21] N. Frantzikinakis and B. Kra. Polynomial averages converge to the product of integrals. Israel J. Math., 148:267276, 2005. 1
[22] N. Frantzikinakis and B. Kuca. Joint ergodicity for commuting transformations and applications to polynomial sequences. 2022. Preprint. arXiv:2207.12288. 2
[23] N. Frantzikinakis and B. Kuca. Seminorm control for ergodic averages with commuting transformations and pairwise dependent polynomial iterates. 2022. To appear in Ergodic Theory Dynam. Systems. 2
[24] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math., 31:204-256, 1977. 1
[25] E. Glasner. Topological ergodic decompositions and applications to products of powers of a minimal transformation. J. Anal. Math., 64:241-262, 1994. 2, 8
[26] B. Host, B. Kra, and A. Maass. Nilsequences and a structure theorem for topological dynamical systems. Adv. Math., 224(1):103-129, 2010. 5
[27] W. Huang, S. Shao, and X. Ye. Nil Bohr-sets and almost automorphy of higher order. Mem. Amer. Math. Soc., 241(1143):v+83, 2016. 7
[28] W. Huang, S. Shao, and X. Ye. Topological correspondence of multiple ergodic averages of nilpotent group actions. J. Anal. Math., 138(2):687-715, 2019. 2, 3, 4
[29] D. Karageorgos and A. Koutsogiannis. Integer part independent polynomial averages and applications along primes. Studia Math., 249(3):233-257, 2019. 1
[30] A. Koutsogiannis. Integer part polynomial correlation sequences. Ergodic Theory Dynam. Systems, 38(4):15251542, 2018. 1
[31] A. Koutsogiannis. Multiple ergodic averages for variable polynomials. Discrete Contin. Dyn. Syst., 42(9):46374668, 2022. 1
[32] A. Koutsogiannis and W. Sun. Total joint ergodicity for totally ergodic systems. 2023. Preprint. arXiv:2302.12278. 1
[33] D. Kwietniak and P. Oprocha. On weak mixing, minimality and weak disjointness of all iterates. Ergodic Theory Dynam. Systems, 32(5):1661-1672, 2012. 10
[34] E. Lehrer. Topological mixing and uniquely ergodic systems. Israel J. Math., 57(2):239-255, 1987. 3
[35] T. K. S. Moothathu. Diagonal points having dense orbit. Colloq. Math., 120(1):127-138, 2010. 3, 4
[36] J. Qiu. Polynomial orbits in totally minimal systems. Adv. Math., 432:Paper No. 109260, 34, 2023. 4
[37] S. Shao and X. Ye. Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence. Adv. Math., 231(3-4):1786-1817, 2012. 4
[38] K. Tsinas. Joint ergodicity of Hardy field sequences. Trans. Amer. Math. Soc., 376(5):3191-3263, 2023. 1
[39] W. A. Veech. The equicontinuous structure relation for minimal Abelian transformation groups. Amer. J. Math., 90:723-732, 1968. 7
[40] R. F. Zhang and J. J. Zhao. Topological multiple recurrence of weakly mixing minimal systems for generalized polynomials. Acta Math. Sin. (Engl. Ser.), 37(12):1847-1874, 2021. 3
(Sebastián Donoso) Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de Chile \& IRL 2807 - CNRS, Beauchef 851, Santiago, Chile

Email address: sdonoso@dim.uchile.cl
(Andreas Koutsogiannis) Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece

Email address: akoutsogiannis@math.auth.gr
(Wenbo Sun) Department of Mathematics, Virginia Tech, 225 Stanger Street, Blacksburg, VA, 24061, USA

Email address: swenbo@vt.edu

[^0]: 2020 Mathematics Subject Classification. Primary: 37B05; Secondary: 37B02, 37B20.
 Key words and phrases. Joint transitivity, topological dynamics, transitivity, proximal relations.
 The first author was partially funded by Centro de Modelamiento Matemático (CMM) FB210005, BASAL funds for centers of excellence from ANID-Chile and ANID/Fondecyt/1241346. The second author was partially supported by the "Excellence in Research" program of the Special Account for Research Funds AUTH (Code 10316). The third author was partially supported by the NSF Grant DMS-2247331.
 ${ }^{1}$ Throughout this paper, whenever a sequence is written as $(a(n))_{n}$ without specifying the range of n, it is understood as a \mathbb{Z}-sequence $(a(n))_{n \in \mathbb{Z}}$.

[^1]: ${ }^{2}$ Naturally, by this we mean that (X, \mathcal{B}, μ) is a standard probability space and $T_{1}, \ldots, T_{d}: X \rightarrow X$ are invertible measure-preserving transformations with $T_{i} T_{j}=T_{j} T_{i}$.
 ${ }^{3}$ In [28], the authors call the family $\left(T_{1}^{n}, \ldots, T_{d}^{n}\right)$ to be Δ-transitive. We use the term "joint transitivity" to emphasize the direct parallelism of Theorem 1.3 to Theorem 1.6 in the measure theoretic setting on "joint ergodicity."

[^2]: ${ }^{4}$ Note that $\mathbf{R} \mathbf{P}_{G_{1}}(X)$ is invariant under this action since G_{1} and G_{2} commute.

[^3]: ${ }^{5}$ This should be a well-known result; we chose to present its short proof (which simplifies the one of [11, Lemma 5.3] that covers the \mathbb{Z} case and almost one-to-one extensions) for completeness.

