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JOINT ERGODICITY FOR FUNCTIONS OF POLYNOMIAL GROWTH

SEBASTIÁN DONOSO, ANDREAS KOUTSOGIANNIS AND WENBO SUN

Abstract. We provide necessary and sufficient conditions for joint ergodicity results for sys-
tems of commuting measure preserving transformations for an iterated Hardy field function of
polynomial growth. Our method builds on and improves recent techniques due to Frantzik-
inakis and Tsinas, who dealt with multiple ergodic averages along Hardy field functions; it
also enhances an approach introduced by the authors and Ferré Moragues to study polynomial
iterates.

1. Introduction

A central problem in ergodic theory is the study of multiple ergodic averages of the form

(1)
1

N

N
∑

n=1

T
a1(n)
1 f1 · . . . · T ad(n)

d fd,

where (X,B, µ, T1, . . . , Td) is a system (that is, (X,B, µ) is a Borel probability space and for all
1 ≤ i ≤ d, Ti : X → X is a measurable, measure preserving transformation, i.e., µ(T−1

i A) = µ(A)
for all A ∈ B), for each 1 ≤ i ≤ d, (ai(n))n is an appropriate integer-valued sequence, and fi is
a bounded function; for a positive integer n, T n denotes the composition T ◦ · · · ◦ T of n copies
of T , and Tf(x) := f(Tx), x ∈ X. In particular, we are interested in the (L2(µ)) norm limiting
behaviour, as N → ∞, of (1) for various ai’s, and commuting Ti’s (i.e., TiTj = TjTi). Our study
deals with commuting and invertible Ti’s.

Furstenberg’s celebrated result ([20]), i.e., proving Szemerédi’s theorem (that each dense subset
of natural numbers contains arbitrarily long arithmetic progressions) by studying (1) for Ti = T
and ai(n) = in, revolutionized the area, leading to far-reaching extensions of Szemerédi’s theorem
and various other profound results. For most of the latter results, the only known proofs are the
ergodic theoretic ones.

For d = 1 and a1(n) = n in (1), von Neumann’s mean ergodic theorem characterizes ergodic-

ity:1 T is ergodic if, and only if, 1
N

∑N
n=1 T

nf →
∫

f dµ as N → ∞. For T = Ti weakly mixing
(w.m. for short) (i.e., T × T is ergodic), and ai(n) = in, Furstenberg showed (again in [20])

that (1) converges to
∏d

i=1

∫

fi dµ. This result was extended in [2] by Bergelson for the case

T1 = · · · = Td being w.m. and ai being essentially distinct integer polynomial iterates.2 Because
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1T is ergodic if A ∈ B, T−1A = A, implies that µ(A) ∈ {0, 1}.
2p ∈ Q[x] is an integer polynomial if p(Z) ⊆ Z; {p1, . . . , pd} are essentially distinct if pi, pi−pj are non-constant

for all i 6= j.
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of the aforementioned results, we call (for ergodic systems)
∏d

i=1

∫

fi dµ the “expected limit”.
So, naturally, one defines the following notion.

Definition. Let (X,B, µ) be a Borel probability space, and (S1(n))n, . . . , (Sd(n))n be sequences
of measure preserving transformations on X. We say that (S1(n))n, . . . , (Sd(n))n are jointly
ergodic (for µ), if for all functions f1, . . . , fd ∈ L∞(µ) we have

(2) lim
N→∞

1

N

N
∑

n=1

S1(n)f1 · . . . · Sd(n)fd =

∫

f1 dµ · . . . ·
∫

fk dµ,

where the convergence takes place in L2(µ). When d = 1, we simply say that the sequence
(S1(n))n is ergodic.3

The first characterization of joint ergodicity is due to Berend and Bergelson [1]:

Theorem ([1]). Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transfor-
mations. Then (T n

1 )n, . . . , (T
n
d )n are jointly ergodic for µ if, and only if, both of the following

conditions are satisfied:

(i) TiT
−1
j is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii) T1 × · · · × Td is ergodic for µ⊗d.

This theorem, for Ti = T i, where T is a w.m. transformation, implies Furstenberg’s w.m.
convergence result. A few years ago, Bergelson, Leibman, and Son showed (in [5]) the following
result for generalized linear functions.4

Theorem ([5]). Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transforma-

tions, and ϕ1, . . . , ϕd be generalized linear functions. Then (T
ϕ1(n)
1 )n, . . . , (T

ϕd(n)
d )n are jointly

ergodic for µ if, and only if, both of the following conditions are satisfied:

(i)
(

T
ϕi(n)
i T

−ϕj(n)
j

)

n
is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii)
(

T
ϕ1(n)
1 × · · · × T

ϕd(n)
d

)

n
is ergodic for µ⊗d.

This result, for Ti = T and ϕi(n) = [αin], where T is w.m. and the αi’s are distinct real
numbers, extends Furstenberg’s w.m. convergence result.

Seeing the similarities of the last two results, it is reasonable to state the following problem.

Problem 1 (Joint ergodicity problem). Let (X,B, µ, T1, . . . , Td) be a system with commut-
ing and invertible transformations. Find classes of integer-valued sequences a1, . . . , ad so that

(T
a1(n)
1 )n, . . . , (T

ad(n)
d )n are jointly ergodic for µ if, and only if, both of the following conditions

are satisfied:

(i)
(

T
ai(n)
i T

−aj(n)
j

)

n
is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii)
(

T
a1(n)
1 × · · · × T

ad(n)
d

)

n
is ergodic for µ⊗d.

3Here, by saying that we have joint ergodicity, we mean that the limit in (2) exists, and it is the expected one.
4A generalized linear function ϕ : N → Z is a function of the form ϕ(n) = [an] + en, where [·] is the integer

value, or floor, function and en is some special, bounded, integer-valued error term.
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Answering a question due to Bergelson, we showed in [11] that the answer to Problem 1 is
affirmative when a1, . . . , ad are equal to the same integer polynomial. This result was later
generalized in [10] to the case where all the ai’s are polynomials that can be grouped in a way
such that polynomials in different groups have different degrees and each two polynomials in
the same grouping are multiples of each other. In two recent papers [17, 18], Frantzikinakis and
Kuca showed that the answer to Problem 1 is affirmative for all integer polynomials (modulo
mild necessary conditions) a1, . . . , ad.

In this paper, we extend the study of Problem 1 to functions a1, . . . , ad beyond polynomials. In
literature, the multiple ergodic averages (1) with ai’s being Hardy field functions (see Section 2 for
definition) of polynomial growth5 has been studied extensively (see for instance [6, 13, 15, 19, 33,
36]). However, to the best of our knowledge, joint ergodicity results for such functions for systems
with commuting transformations have not been obtained in the past. By [33, Lemma A.3], every
Hardy field function h of polynomial growth can be written as

h(x) = sh(x) + ph(x) + eh(x),

where sh is a strongly non-polynomial Hardy field function,6 ph is a polynomial and eh(x) → 0
as x → ∞. Under the additional, natural, assumption log x ≺ sh(x),

7 we have:

Theorem 1.1. Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transforma-
tions, and h be a Hardy field function from H8 of polynomial growth, with log x ≺ sh(x). Then

(T
[h(n)]
1 )n, . . . , (T

[h(n)]
d )n are jointly ergodic for µ if, and only if, both of the following conditions

are satisfied:

(i) ((TiT
−1
j )[h(n)])n is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii) ((T1 × · · · × Td)
[h(n)])n is ergodic for µ⊗d.

The following are some examples of functions h that we can deal with:

x log x, 9 xe log2 x+ x17.

We believe that the assumption log ≺ sh can be lifted to log ≺ h, and that, even though we are
dealing with a single sequence in Theorem 1.1, something more general holds:

Conjecture 1. Problem 1 holds for functions h1, . . . , hd from the Hardy field H of polynomial
growth with log ≺ hi, 1 ≤ i ≤ d.

Our method in fact yields a result more general than Theorem 1.1 (see Theorem 6.1), where
h is the sum of a Hardy field function and a tempered function (see Section 6 for the definition).

5A function h has polynomial growth if it satisfies h(x) ≪ xd for some d ∈ N, where, for two functions
a, b : (x0,∞) → R, we write a ≪ b if there exists a universal constant C > 0 so that |a(x)| ≤ C|b(x)| for all x.

6By this we mean that sh is a Hardy field function and that, for some non-negative integer i, it satisfies
xi ≺ sh(x) ≺ xi+1, where for two functions a, b : (x0,∞) → R, we write a ≺ b if |a(x)|/|b(x)| → 0 as x → ∞.

7This is a natural assumption for convergence results, in the sense that for strongly non-polynomial Hardy
field functions it implies equidistribution (see, e.g., [8, 13, 15]).

8H is a Hardy field that will also be defined in Section 2.
9This example was proven to be good for convergence very recently in [36]; what is crucial here is the fact that

one can approach this function by variable polynomials. Its derivative is, modulo the constant 1, equal to log x,
a “bad” for convergence function as it fails to be equidistributed.
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1.1. Strategy of the paper. In literature, the study of multiple ergodic averages (1) mainly
focuses on polynomial, Hardy field and tempered functions (and combinations of them).10 In
fact, these are the only known classes of functions with the following property: if a function f
of “degree k” (meaning that nk ≪ f(n) ≺ nk+1) belongs to the class, then its derivative f ′ not
only belongs to the same class but also is of “degree k − 1” (meaning that nk−1 ≪ f ′(n) ≺ nk).
For this very reason, the usual approach to studying the corresponding (1), for such classes of
functions, is to reduce its complexity by using variants of the van der Corput lemma combined
with variations of the PET induction (see Section 3).

During the past few years there is an interest in the class of variable polynomial sequences.
The study of multiple ergodic averages with such iterates is an interesting new topic on its
own, with open problems (see, e.g., [16, 30]) and results which have led to variable variations
of classical theorems (see [15, 22, 29, 30, 36]). Most importantly, it provides an additional tool
that can be used for the study of averages with iterates coming from the suitable classes of
functions mentioned above. More specifically, for iterates which are Hardy field functions (or,
even more generally, “smooth enough” functions–see Section 6), we can alternatively approach
them by variable polynomials of bounded degrees first, and then run the PET induction via the
van der Corput’s lemma, on the polynomials. This alternative approach can also treat iterates
which cannot be treated by the first one, such as x log x.

Our strategy is to study the joint ergodicity problem by incorporating the second approach
mentioned above with the machinery created in our previous works [10, 11]. To achieve this,
we first approximate the iterates in the multiple ergodic average of interest by variable polyno-
mials. Then, we extend the concepts of PET tuples and vdC operations in [10, 11] for variable
polynomials, and use them to bound the stated average by an average of ergodic averages with
linear iterates (on “short intervals”). Finally, we deduce the desired result by using [10, Propo-
sition 5.2], which is the central part of [10, 11] where concatenation theorems from [35] were
crucially used. To achieve this, we need to make several adaptions to the approaches in these
works. To be more precise, we need to extend the concepts of PET tuples and vdC operations
to variable polynomials, i.e., of the form [pN (n)], and generalize certain seminorm estimates for
multiple ergodic averages with such iterates.

As we already mentioned, [33, Lemma A.3] implies that every Hardy field function h of poly-
nomial growth can be written as

h(x) = sh(x) + ph(x) + eh(x),

where sh is a strongly non-polynomial Hardy field function, ph is a polynomial and eh(x) → 0 as
x → ∞. We will work with such functions, under the assumption that log x ≺ sh(x). In Section 2,
Proposition 2.1, we show that if a function a can be written as

a(N + r) = pN (r) + eN,r,

with eN,r ≪ 1, for every positive integer N and 0 ≤ r ≤ L(N), where L is an appropriate positive
Hardy field function satisfying 1 ≺ L(x) ≺ x, and (pN )N is a variable polynomial sequence,
then, to study the initial multiple averages with iterates [a(n)] along 1 ≤ n ≤ N, it suffices to
study the corresponding averages with iterates [pN (n)] along 0 ≤ n ≤ L(N). We also prove in
Proposition 2.2 a change of variables statement, which shows that if the sequence of variable

10A (far from complete) list here is the following: [2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 27, 29, 30,
31, 32, 36, 37].
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polynomials pN has “special” leading coefficients, then we can transform it to one with leading
coefficients 1.11 In Section 3, we extend the results on PET induction from [10, 11] to variable
polynomials, which is used to reduce the complexity of multiple ergodic averages with such
iterates, and eventually, via Lemma 3.5, reduce the problem to the base case, namely, the linear
one. Then, in Section 4, we provide, in Proposition 4.1, a Gowers-Host-Kra-type seminorm upper
bound for multiple ergodic averages for certain linear variable polynomials, and in Theorem 4.4 a
bound for variable polynomials of leading coefficient 1 (using the inductive scheme of Section 3).
In Section 5, we show that, for the functions h we deal with, we can combine all the ingredients
proved in the previous sections to deduce our main result, Theorem 1.1, via Theorem 5.1, [11,
Corollary 2.5], and [7, Theorem 1.1]. Finally, in Section 6, we explain how our method can be
used to study some iterates beyond Hardy field functions.12

1.2. Notation. We denote with N, N0, Z, Q, R, C and S1 the set of positive integers, non-
negative integers, integers, rational numbers, real numbers, complex numbers and complex num-
bers of modulus 1 respectively. If X is a set, and d ∈ N, Xd denotes the Cartesian product
X × · · · ×X of d copies of X. For M,N ∈ Z with M ≤ N , let [M,N ] := {M,M +1, . . . , N}; we
also define [N ] := {0, . . . , N − 1}. We denote by ei the i-th standard unit vector, which has 1 as
its i-th coordinate and 0 elsewhere.

Let (a(n))n be a sequence of complex numbers, or a sequence of measurable functions on a
probability space (X,B, µ), indexed by the set of natural numbers. Throughout this article, we
use the following notation for averages:

En∈Aa(n) :=
1
|A|
∑

n∈A a(n), where A is a finite subset of Z;

En∈Za(n) := limN→∞ En∈[−N,N ]a(n) if the limit exists;

En∈Za(n) := limN→∞ En∈[−N,N ]a(n).

We also consider iterated averages: Let (a(h1, . . . , hs))h1,...,hs∈Z be a multi-parameter sequence.
We let

Eh1,...,hs∈Za(h1, . . . , hs) := Eh1∈Z . . .Ehs∈Za(h1, . . . , hs)

if the limit exists, we adopt similar conventions for Eh1,...,hs∈Z and for averages indexed in N.

We end this section by recalling the notion of a system indexed by (Zd,+), d ∈ N. We say that
a tuple (X,B, µ, (Tn)n∈Zd) is a Zd-measure preserving system (or a Zd-system) if (X,B, µ) is a
probability space and, Tn : X → X, n ∈ Zd, are measurable, measure preserving transformations
on X such that T(0,...,0) = id and Tn ◦ Tm = Tn+m for all n,m ∈ Zd. Given d commuting and

invertible transformations T1, . . . , Td, we can naturally define a Zd-action as follows:

Tn = T n1
1 · . . . · T nd

d , n = (n1, . . . , nd) ∈ Zd.

11Another indication that variable polynomial sequences with leading coefficients 1 form a good class of (vari-
able) polynomials to deal with, is also revealed in [15], where Frantzikinakis showed that, for a single transforma-
tion, multiple ergodic averages with such iterates have the nilfactors as characteristic factors.

12Our approach can deal with more general iterates, namely functions a of the form

a(x) = h(x) + ct(x),

where h ∈ H is as before, c ∈ R, and t ∈ T , is a tempered function with max{log x, ct(x)} ≺ h(x), which satisfy
some natural growth rate-related assumptions (see Section 6)
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So, we identify the Z-action Ti with Tei for 1 ≤ i ≤ d.13 By slightly abusing the notation, we
also refer to (X,B, µ, T1, . . . , Td) as a Zd-system. Let H be a subgroup of Zd. We say that H is
ergodic for a Zd-system (X,B, µ, (Tn)n∈Zd) if for every A ∈ B such that TgA = A for all g ∈ H,

we have that µ(A) ∈ {0, 1}. In particular, we say that (X,B, µ, (Tn)n∈Zd) is ergodic if Zd is
ergodic for the system. Finally, when it is clear, we will write ‖·‖2 instead of ‖·‖L2(µ) and ‖·‖∞
instead of ‖·‖L∞(µ).

For a set of parameters A, and a potivite real number α, we write OA(α) to denote a quantity
that is ≤ CA ·α for some constant CA > 0 depending only on the parameters in A; if the constant
C is universal, we write O(α) instead.

2. Reduction to variable polynomial iterates

We start with the defintion of Hardy field functions. Let B be the collection of equivalence
classes of real valued functions defined on some halfline (x0,∞), x0 ≥ 0, where two functions
that eventually agree are identified. These equivalence classes are called germs of functions. A
Hardy field is a subfield of the ring (B,+, ·) that is closed under differentiation.14

Usually, one deals with the class of logarithmico-exponential Hardy field functions, LE, which
can be handled more easily: h is a logarithmico-exponential Hardy field function if it is defined
on some (c,+∞), c ≥ 0, by a finite combination of symbols +,−,×,÷, n

√·, exp, log acting on
the real variable x and on real constants (for more on Hardy field functions and in particular for
logarithmico-exponential ones one can check [13], [15], [23]).

As in [36], we will work on the Hardy field H which is closed under composition and compo-
sitional inversion of functions, when defined (i.e., if h1, h2 ∈ H with limx→∞ h2(x) = ∞, then
h1 ◦ h2, h−1

2 ∈ H).15

A function h from H of polynomial growth has degree a non-negative integer dh ≥ 0, if
xdh ≪ h(x) ≺ xdh+1 (recall from the introduction that if xdh ≺ h(x) ≺ xdh+1, then h is strongly
non-polynomial).

As we mention before, our work concerns iterates involving families of variable polynomials.
A sequence of real variable polynomials is a sequence of the form (pN (n))N,n ⊆ R, where we
assume that while the polynomials pN might depend on N, their degrees do not.16 The following
are two examples of sequences of variable polynomials:

pN,1(n) =
n17

√
N

, pN,1(n) =
(

√
2

N e/π
+

N

3

)

n7 − 31

logN
n+ 1, N, n ∈ N.

As in [36], the main idea in our setting is that we will approximate a given function, a ∈ H,
by “good” variable polynomials, (pN )N , in suitable intervals (with lengths that tend to infinity).
Then, as reflected in the following proposition, to study multiple ergodic averages with iterates
[a(n)], it suffices to study some related weighted (with some bounded error terms as weights)
averages with iterates [pN (n)].

13Notice that we change our notation form Tn, n ∈ Z to Tn, n ∈ Zd when dealing with a Z or, respectively, a
Zd-action to distinguish them.

14We use the word function when we refer to elements of B (understanding that all the operations defined and
statements made for elements of B are considered only for sufficiently large values of x ∈ R).

15Notice here that LE does not have this property but it is contained in the Hardy field of Pfaffian functions
which does ([28]).

16For a study on “good” variable polynomials, see [30].
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Proposition 2.1. Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transfor-
mations. Let a be a function and L ∈ H a positive function with 1 ≺ L(x) ≺ x. Let (pN )N be a
sequence of functions such that for all N ∈ N and 0 ≤ r ≤ L(N),

a(N + r) = pN (r) + eN,r, with eN,r ≪ 1.

Assuming that

lim sup
N→∞

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L(N)cn

d
∏

i=1

T
[pN (n)]
i fi

∥

∥

∥

∥

∥

κ

2

= 0,

for some κ ∈ N and f1 ∈ L∞(µ), we have

lim sup
N→∞

∥

∥

∥

∥

∥

E1≤n≤N

d
∏

i=1

T
[a(n)]
i fi

∥

∥

∥

∥

∥

2

= 0

for all f2, . . . , fd ∈ L∞(µ).

Proof. To show the result, by [36, Lemma 3.3],17 it suffices to show that

lim sup
R→∞

E1≤N≤R

∥

∥

∥

∥

∥

EN≤n≤N+L(N)

d
∏

i=1

T
[a(n)]
i fi

∥

∥

∥

∥

∥

κ

2

= 0,

hence, it suffices to show

lim sup
N→∞

∥

∥

∥

∥

∥

EN≤n≤N+L(N)

d
∏

i=1

T
[a(n)]
i fi

∥

∥

∥

∥

∥

κ

2

= 0.

Write n = N + r for some 0 ≤ r ≤ L(N). Since a(N + r) = pN (r) + eN,r, then [a(N + r)] =
[pN (r)] + ẽN,r, ẽN,r ≪ 1, hence the left hand side of the previous relation is equal to

(3) lim sup
N→∞

∥

∥

∥

∥

∥

E0≤r≤L(N)

d
∏

i=1

T
[pN (r)]+ẽN,r

i fi

∥

∥

∥

∥

∥

κ

2

.

Since ẽN,r ≪ 1, by [36, Lemma 3.2], (3) is bounded by a constant multiple of the quantity

lim sup
N→∞

sup
|cr|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤r≤L(N)cr

d
∏

i=1

T
[pN(r)]
i fi

∥

∥

∥

∥

∥

κ

2

,

finishing the proof. �

We will demonstrate how we use the previous approach for a Hardy field function

h(x) = sh(x) + ph(x).

We do this with two specific examples to cover both cases, i.e., dph < dsh +1, and dph ≥ dsh +1,
where dph is the degree of ph and dsh is the degree of sh (for the general case, see right after the
proof of Theorem 5.1). In both cases, we will choose a positive integer K that will indicate the
order of the Taylor expansion for the non-polynomial part.

17We remark at this point that the assumption L ∈ H, where H is a, closed under composition and composi-
tional inversion of functions, Hardy field, is postulated exactly so we can use this statement.
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Example 1. Let h1(x) = πx+ x log x.
Here we have ph1(x) = πx, and sh1(x) = x log x, hence dph1 = 1 < 1 + dsh1 .

Picking K = dsh1 + 1 = 2, we have that h1(N + r) is approximated by

pN,1(r) = ph1(N + r) + sh1(N) + s′h1
(N)r +

s′′h1
(N)

2
r2

= πN +N logN + (π + 1 + logN)r +
1

2N
r2,

0 ≤ r ≤ L1(N) = N
7
12 (we picked L1(x) as the geometric mean of |s′′h1

(x)|− 1
2 and |s′′′h1

(x)|− 1
3 ).

Example 2. Let h2(x) =
√
2x2 + log2 x.

Here we have ph2(x) =
√
2x2, and sh2(x) = log2 x, hence dph2 = 2 > 1 + dsh2 .

Picking K = dph1 + 1 = 3, we have that h2(N + r) is approximated by

pN,2(r) = ph2(N + r) + sh2(N) + s′h2
(N)r +

s′′h2
(N)

2
r2 +

s′′′h2
(N)

6
r3

=
√
2N2 + log2N +

(

2
√
2N +

2 logN

N

)

r +
(√

2 +
1− logN

N2

)

r2 +
2 logN − 3

3N3
r3,

0 ≤ r ≤ L2(N) = N/(log7/24 N) (here we picked L2(x) to be of the same growth rate as the

geometric mean of |s′′′h2
(x)|− 1

3 and |s(4)h2
(x)|− 1

4 ).

As we already mentioned, and it is verified by both examples we just saw, we will deal with
functions such that the corresponding variable sequence (pN )N doesn’t have leading coefficient
1. In that case, we will transform it into such. This is crucial to our study in order to use the
concatenation approach from [10]. The following proposition justifies this and can be viewed as
a change-of-variables procedure.

Proposition 2.2. Let (aN )N be a sequence of real numbers with (eventually) constant sign,
L ∈ H a positive function with 1 ≺ L(x) ≺ x, and K ∈ N such that

• limN→∞ L(N)|aN | 1
K = ∞;

• limN→∞ aN = 0; and

• L(N) ≪ |aN |−
K+1
K2 .

If (pN )N is a variable polynomial sequence of degree less than K, then there exist a variable

polynomial sequence (p̃N )N of degree less than K and a positive function L̃ with 1 ≺ L̃(x) ≺ x
such that for every system (X,B, µ, T1, . . . , Td), f1 ∈ L∞(µ), and κ ∈ N, we have

lim sup
N→∞

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L(N)cn

d
∏

i=1

T
[aNnK+pN (n)]
i fi

∥

∥

∥

∥

∥

κ

2

≤ lim sup
N→∞

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L̃(N)cn

d
∏

i=1

T
[nK+p̃N (n)]
i fi

∥

∥

∥

∥

∥

κ

2

.

(4)

Proof. For convenience denote DN := |aN | 1
K . We assume without loss of generality that, for

large N, aN > 0. We have limN→∞D−1
N = ∞. For 0 ≤ n ≤ L(N), we may write

n = k[D−1
N ] + s,
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for some 0 ≤ k ≤ [L̃(N)], where L̃(N) := L(N)/[D−1
N ] and 0 ≤ s ≤ [D−1

N ]− 1.18 Then

aNnK + pN(n) = aN (k[D−1
N ] + s)K + pN (k[D−1

N ] + s) = kK(DN [D−1
N ])K + pN,s(k)

for some polynomial pN,s of degree at most K − 1.
Note that, if N is large,

|kK(DN [D−1
N ])K − kK | ≪ 1.

Indeed,
∣

∣kK(DN [D−1
N ])K − kK

∣

∣ ≤ KkK
∣

∣DN [D−1
N ]− 1

∣

∣ = KkK
∣

∣DN

(

D−1
N − {D−1

N }
)

− 1
∣

∣ ≤ KkKDN

≤ KDN

(

L(N)

D−1
N − 1

)K

≪ KDN

(

L(N)

D−1
N

)K

= K





L(N)

D
−K+1

K
N





K

≪ 1.

So,

aNnK + pN (n) = kK + pN,s(k) +O(1).

The left hand side of (4), by using convexity, and then [36, Lemma 3.2] to deal with the bounded
error terms, is bounded by a constant multiple of

lim sup
N→∞

E0≤s≤[D−1
N ]−1 sup

|cn|≤1
sup

‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L̃(N)cn

d
∏

i=1

T
[nK+pN,s(n)]
i fi

∥

∥

∥

∥

∥

κ

2

.

Since

lim
N→∞

L̃(N) = lim
N→∞

L(N)DN
D−1

N

[D−1
N ]

= lim
N→∞

L(N)DN = lim
N→∞

L(N)|aN | 1
K = ∞,

and

lim
N→∞

L̃(N)

N
= lim

N→∞
L(N)

N
DN

D−1
N

[D−1
N ]

= lim
N→∞

L(N)

N
DN = 0,

by setting p̃N to be the pN,s which attends the maximum of

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L̃(N)cn

d
∏

i=1

T
[nK+pN,s(n)]
i fi

∥

∥

∥

∥

∥

κ

2

,

we get the result. �

In particular, for Example 1, setting aN =
s′′h1

(N)

2 = 1
2N , we can pick L̃1(N) = L1(N)

[a
−1/2
N ]

= N
7
12

[
√
2N ]

(which grows as N
1
12√
2

), so, for n = k[a
−1/2
N ] + s, 0 ≤ k ≤ [L̃1(N)], 0 ≤ s ≤ [a

−1/2
N ]− 1, we have

pN,1(n) = k2 + 2aN [a
−1/2
N ]k + aNs2 + p̃N,1(k[a

−1/2
N ] + s) +O(1),

where p̃N,1(r) = πN +N logN + (π + 1 + logN)r is of degree 1.

18This L̃ can actually be taken in H (in particular we can set L̃(N) to be equal to L(N)DN ) by the cost of an
average that goes to 0 as we lose values from a set of density 0.
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Similarly, for Example 2, setting aN =
s′′′h2

(N)

6 = 2 logN−3
3N3 , we can pick L̃2(N) = L2(N)

[a
−1/3
N ]

=

N
log7/24 N

· 1
[

3√3N
3√2 logN−3

] (which grows as 3

√

2
3 log

1
24 N), so, for n = k[a

−1/3
N ] + s, 0 ≤ k ≤ L̃2(N),

0 ≤ s ≤ [a
−1/3
N ]− 1, we have

pN,2(n) = k3 + 3aN [a
−1/3
N ]2sk2 + 3aN [a

−1/3
N ]s2k + aNs3 + p̃N,2(k[a

−1/3
N ] + s) +O(1),

where p̃N,2(r) =
√
2N2 + log2 N +

(

2
√
2N + 2 logN

N

)

r +
(√

2 + 1−logN
N2

)

r2 is of degree 2.

3. PET induction for variable polynomials

In this section we define the van der Corput operation, which will be used, together with the
van der Corput lemma (Lemma 3.1 and 3.2) and PET induction scheme, to get the required
upper bounds of the expressions of interest. To achieve the latter, we also need to control the
coefficients of the polynomial iterates (for which we follow [10]).

3.1. Van der Corput lemmas and van der Corput operation. We will use two different
versions of the van der Corput lemma.

Lemma 3.1 (Lemma 4.3 of [36]). Let (un)n∈Z be a sequence in a Hilbert space with ‖un‖ ≤ 1,
d ≥ 1 and M,N ∈ N. Then

‖En∈[N ]un‖2
d ≪d

1

M
+
(M

N

)2d−1

+ E−M≤m≤M |En∈[N ]〈un+m, un〉|2
d−1

.

The next follows from from Chapter 21, Section 1.2, Lemma 1 of [26]:

Lemma 3.2. Let (un)n∈Z be a sequence in a Hilbert space with ‖un‖ ≤ 1 and M,N ∈ N. Then

‖En∈[N ]un‖2 ≤ 6M

N
+ Ex,y∈[M ]En∈[N ]〈un+x, un+y〉.

The PET induction is an inductive procedure to reduce the complexity of multiple ergodic
averages, which was first introduced in [2]. In this paper, we use a variation of the PET induction
scheme introduced in [10], adapted to the families of variable polynomials.

We say that a sequence of polynomials q = (qN )N∈N, qN : Zs → R is consistent if the degree
of qN with respect to the first variable is, for N sufficiently large, a constant. In this case this
constant is defined to be the degree of the sequence, denoted by deg(q).

We say that a consistent sequence q is essentially non-constant if deg(q) > 0, and that two
consistent sequences q and q′ are essentially distinct if q − q′ is essentially non-constant. We
say that a tuple of polynomial sequences (q1, . . . , qℓ) is consistent if all of qi, qi − qj, i 6= j, are
consistent, and non-degenerate if the qi’s are essentially non-constant and essentially distinct.

Let s ∈ N0 and ℓ ∈ N. For 1 ≤ m ≤ ℓ and N ∈ N, let qN,m : Zs+1 → Rd be a polynomial.
Put q = (qN,1, . . . , qN,ℓ)N . We say that A = (s, ℓ,q) is a PET-tuple.19 The tuple A = (s, ℓ,q) is
non-degenerate (resp. consistent) if q is non-degenerate (resp. consistent).

For each non-degenerate PET-tuple A = (s, ℓ,q) and 1 ≤ t ≤ ℓ, we define the vdC-operation,
∂tA, according to the following three steps:

19We use s instead of s+ 1 to highlight the number of hi’s.
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Step 1: For all 1 ≤ m ≤ ℓ and N ∈ N, let q′N,1, . . . , q
′
N,2ℓ : Z

s+2 → Rd be functions defined as

q′N,m(n;h1, . . . , hs+1) =

{

qN,m−ℓ(n;h1, . . . , hs)− qN,t(n;h1, . . . , hs) , ℓ+ 1 ≤ m ≤ 2ℓ
qN,m(n+ hs+1;h1, . . . , hs)− qN,t(n;h1, . . . , hs) , 1 ≤ m ≤ ℓ

.

We use the letter n for the first variable and hi’s for the remaining ones. For convenience, we
write q′m := (q′N,m)N and let q′0 denote the sequence of constant zero polynomials.

Lemma 3.3. If q is non-degenerate, then for all 0 ≤ i, j ≤ 2ℓ, i 6= j, q′i − q′j is consistent.

Proof. Unpacking the definitions, it suffices to verify that the following families are consistent
for all 0 ≤ i, j ≤ 2ℓ, i 6= j:

(i) qN,i(n;h1, . . . , hs)− qN,j(n;h1, . . . , hs), N ∈ N;
(ii) qN,i(n+ hs+1;h1, . . . , hs)− qN,j(n+ hs+1;h1, . . . , hs), N ∈ N;
(iii) qN,i(n+ hs+1;h1, . . . , hs)− qN,j(n;h1, . . . , hs), N ∈ N.

The first case follows from the assumption that q is non-degenerate. The second case follows from
the assumption that q is non-degenerate and the fact that qN,i(n+ hs+1;h1, . . . , hs)− qN,j(n+
hs+1;h1, . . . , hs) has the same leading coefficient in the variable n as that of qN,i(n;h1, . . . , hs)−
qN,j(n;h1, . . . , hs). The third case is similar to the second one. �

Step 2: We remove from q′1, . . . , q
′
2ℓ the collections of functions q′j which are essentially con-

stant and the corresponding functions with those as iterates, and then put the remaining ones
into groups Ji = {(q′′N,i,1)N , . . . , (q′′N,i,ti

)N}, 1 ≤ i ≤ r, for some r, ti ∈ N such that two
sequences are essentially distinct if, and only if, they belong to different groups. For every
1 ≤ j ≤ ti, there exist variable polynomials p′′N,i,j : Z

s+1 → R such that q′′N,i,j(n;h1, . . . , hs+1) =

q′′N,i,1(n;h1, . . . , hs+1) + p′′N,i,j(h1, . . . , hs+1) for sufficiently large N .

Step 3: Let q∗N,i = q′′N,i,1. Set q∗ = (q∗N,1, . . . , q
∗
N,r)N∈N, and let this new PET-tuple be

∂tA = (s + 1, r,q∗).20 It is clear from the construction that q∗ and ∂tA are non-degenerate.
Therefore, if A is non-degenerate, then so is ∂tA.

We say that the operation A → ∂tA is 1-inherited if q′1 = q∗1 and we did not drop q∗1 or group
it with any other q∗i in Step 2.

Let A = (s, ℓ,q) be a PET-tuple, where q = (qN,1, . . . , qN,ℓ)N with qN,i : Z
s+1 → Rd being

polynomials, κ ∈ N, (X,B, µ, (Tn)n∈Zd) be a Zd-system, and f ∈ L∞(µ). For h1, . . . , hs ∈ Z, set

S(A, f, κ, (h1, . . . , hs)) := limN→∞ sup
|cn|≤1

sup
‖g2‖∞,...,‖gℓ‖∞≤1

∥

∥

∥
En∈[N ]cn

ℓ
∏

m=1

T[qN,m(n;h1,...,hs)]gm(x)
∥

∥

∥

κ

2
,

where g1 := f , and

S(A, f, κ) := Eh1,...,hs∈ZlimN→∞ sup
|cn|≤1

sup
‖g2‖∞,...,‖gℓ‖∞≤1

∥

∥

∥

∥

∥

En∈[N ]cn

ℓ
∏

m=1

T[qN,m(n;h1,...,hs)]gm(x)

∥

∥

∥

∥

∥

κ

2

= Eh1,...,hs∈ZS(A, f, κ, (h1, . . . , hs)).

20Here we abuse the notation by writing ∂tA to denote any of such operations obtained from Step 1 to 3.
Strictly speaking, ∂tA is not uniquely defined as the order of grouping of q′N,1, . . . , q

′
N,2ℓ in Step 2 is ambiguous.

However, this is done without loss of generality, since the order does not affect the value of S(∂tA, ·) (see below).
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Lemma 3.4. Let (X,B, µ, (Tn)n∈Zd) be a Zd-system, A = (s, ℓ,q) be a non-degenerate PET-
tuple, f ∈ L∞(µ), and κ ∈ N. Then, for any 1 ≤ t ≤ ℓ, ∂tA is also a non-degenerate PET-tuple.
Moreover, if A → ∂tA is 1-inherited, then

S(A, f, 2κ) ≪κ,ℓ S(∂tA, f, κ).

Proof. The fact that ∂tA is a non-degenerate PET-tuple was verified previously (see Step 3).
We are left with proving the second conclusion. For convenience, write h := (h1, . . . , hs) and
h′ := (h1, . . . , hs+1). Suppose that ∂tA = (s+ 1, r,q∗).

Fix h = (h1, . . . , hs). For every N ∈ N, 1 ≤ n ≤ N, we pick |cN,n| ≤ 1, and gN,m ∈ L∞(µ)
with ‖gN,m‖∞ ≤ 1, 2 ≤ m ≤ ℓ, so that

∥

∥

∥

∥

∥

En∈[N ]cN,n

ℓ
∏

m=1

T[qN,m(n;h1,...,hs)]gN,m(x)

∥

∥

∥

∥

∥

2κ

2

is 1/N close to

sup
|cn|≤1

sup
‖g2‖∞,...,‖gℓ‖∞≤1

∥

∥

∥

∥

∥

En∈[N ]cn

ℓ
∏

m=1

T[qN,m(n;h1,...,hs)]gm(x)

∥

∥

∥

∥

∥

2κ

2

,

where gN,1 := g1 := f . For M,N ∈ N, by Lemma 3.1, we have that

∥

∥

∥

∥

∥

En∈[N ]cN,n

ℓ
∏

m=1

T[qN,m(n;h)]gN,m

∥

∥

∥

∥

∥

2κ

2

≪κ E|hs+1|≤M

∣

∣

∣En∈[N ]

〈

cN,n

ℓ
∏

m=1

T[qN,m(n;h)]gN,m, cN,n+hs+1

ℓ
∏

m=1

T[qN,m(n+hs+1;h)]gN,m

〉∣

∣

∣

κ

+
1

M
+
(M

N

)κ

= E|hs+1|≤M

∣

∣

∣
En∈[N ]

〈

cN,n

ℓ
∏

m=1

T[qN,m(n;h)]−[qN,t(n;h)]gN,m,

cN,n+hs+1

ℓ
∏

m=1

T[qN,m(n+hs+1;h)]−[qN,t(n;h)]gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ

= E|hs+1|≤M

∣

∣

∣En∈[N ]

〈

cN,n

ℓ
∏

m=1

T[q′N,m+ℓ(n;h
′)]+ǫN,m+ℓ,n,h′gN,m,

cN,n+hs+1

ℓ
∏

m=1

T[q′N,m(n;h′)]+ǫN,m,n,h′ gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ

= E|hs+1|≤M

∣

∣

∣En∈[N ]

〈

cN,ncN,n+hs+1 ,

2ℓ
∏

m=1

T[q′N,m(n;h′)]+ǫN,m,n,h′ gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ
,

(5)

where ǫN,m,n,h′ ∈ {−1, 0, 1} and gm+ℓ,N := gm,N for 1 ≤ m ≤ ℓ.
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Assume that q∗ = (q∗N,1, . . . , q
∗
N,r)N . Since A → ∂tA is 1-inherited, q∗N,1 = q′N,1 and we did

not drop or combine (q′N,1)N with any other polynomial. For 1 ≤ j ≤ r, let Ij be the set of

m ∈ {1, . . . , 2ℓ} such that (q′N,m)N is essentially the same as (q∗N,j)N . For m ∈ Ij, we may

write q′N,m := q∗N,j+ q̃N,j,m for some variable polynomial family (q̃N,j,m)N which does not depend

on the variable n (i.e., the first variable) when N is sufficiently large. Let I0 be the set of
m ∈ {1, . . . , 2ℓ} such that (q′N,m)N is essentially constant. Then the last line of (5) is bounded
by

E|hs+1|≤M

∣

∣

∣
En∈[N ]

〈

∏

m∈I0
T[q′N,m(n;h′)]+ǫN,m,n,h′gN,m,

cN,ncN,n+hs+1

r
∏

j=1

∏

m∈Ij
T[q′N,m(n;h′)]+ǫN,m,n,h′ gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ
.

(6)

Since for all m ∈ I0, q
′
N,m(n;h′) is independent of n when N is sufficiently large, we may write

q′N,m(n;h
′) = q′′N,m(h′) for some polynomial q′′N,m. For any ǫ = (ǫm)m∈I0 ∈ {−1, 0, 1}|I0 |, let

AN,h′,ǫ denote the set of n ∈ [N ] such that ǫN,m,n,h′ = ǫm for all m ∈ I0. Then we may rewrite
(6) as

E|hs+1|≤M

∣

∣

∣En∈[N ]

∑

ǫ∈{−1,0,1}|I0|

〈

1AN,h′,ǫ(n)
∏

m∈I0
T[q′′N,m(h′)]+ǫmgN,m,

cN,ncN,n+hs+1

r
∏

j=1

∏

m∈Ij
T[q′N,m(n;h′)]+ǫN,m,n,h′gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ

≪ℓ E|hs+1|≤M sup
ǫ∈{−1,0,1}|I0|

sup
|cn|≤1

∣

∣

∣
En∈[N ]

〈

∏

m∈I0
T[q′′N,m(h′)]+ǫmgN,m,

cn

r
∏

j=1

∏

m∈Ij
T[q′N,m(n;h′)]+ǫN,m,n,h′ gN,m

〉∣

∣

∣

κ
+

1

M
+
(M

N

)κ
.

(7)

When N is sufficiently large, we may use the Cauchy-Schwarz inequality to bound the last line
of (7) by

E|hs+1|≤M sup
|cn|≤1

∥

∥

∥

∥

∥

∥

En∈[N ]cn

r
∏

j=1

∏

m∈Ij
T[q′N,m(n;h′)]+ǫN,m,n,h′gN,m

∥

∥

∥

∥

∥

∥

κ

2

+
1

M
+
(M

N

)κ

= E|hs+1|≤M sup
|cn|≤1

∥

∥

∥

∥

∥

∥

En∈[N ]cn

r
∏

j=1

∏

m∈Ij
T[q∗N,j(n;h

′)]+[q̃N,j,m(n;h′)]+ǫ′
N,m,n,h′gN,m

∥

∥

∥

∥

∥

∥

κ

2

+
1

M
+
(M

N

)κ
,

(8)

where ǫ′N,m,n,h′ ∈ {−2, 0, 2}. Since ∂tA is 1-inherited we have that

∏

m∈I1
T[q∗N,m(n;h′)]+[q̃N,j,m(n;h′)]+ǫ′

N,m,n,h′gN,m = T[q∗N,1(n;h
′)]+ǫ′

N,1,n,h′f.
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Using [36, Lemma 3.2], the last line of (8) is bounded by Oκ,ℓ(1) times

E|hs+1|≤M sup
|cn|≤1

sup
‖g∗m‖∞≤1,
m∈⋃r

j=2
Ij

∥

∥

∥

∥

∥

∥

En∈[N ]cn

r
∏

j=1

∏

m∈Ij
T[q∗N,j(n;h

′)]+[q̃N,j,m(n;h′)]g
∗
m

∥

∥

∥

∥

∥

∥

κ

2

+
1

M
+
(M

N

)κ

≤ E|hs+1|≤M sup
|cn|≤1

sup
‖g2‖∞,...,‖gr‖∞≤1

∥

∥

∥

∥

∥

∥

En∈[N ]cn

r
∏

j=1

T[q∗N,j(n;h
′)]gj

∥

∥

∥

∥

∥

∥

κ

2

+
1

M
+
(M

N

)κ
,

where g∗1 = f . Taking the limsup as N goes to infinity, we conclude that

lim sup
N→∞

sup
|cn|≤1

sup
‖g2‖∞,...,‖gℓ‖∞≤1

∥

∥

∥

∥

∥

En∈[N ]cn

ℓ
∏

m=1

T[qN,m(n;h)]gm

∥

∥

∥

∥

∥

2κ

2

≤ E|hs+1|≤MS(∂tA,κ,h
′) +

1

M
.

Letting M go to infinity we get

S(A, f, 2κ,h) ≪κ,ℓ Ehs+1∈ZS(∂tA, f, κ,h
′).

Taking the average Eh1,...,hs∈Z, we obtain the desired conclusion. �

Let A = (s, ℓ,q = (qN,1, . . . , qN,ℓ)N ) be a PET tuple. Let deg(A), the degree of A, be the
maximum of deg((qN,j)N ), 1 ≤ j ≤ ℓ. We say that A is 1-standard deg((qN,1)N ) = deg(A).

Lemma 3.5. Let A be a 1-standard and non-degenerate PET-tuple with deg(A) ≥ 1. There exist
M ∈ N depending only on deg(A), ℓ ∈ N, and i1, . . . , iM ∈ N such that for all 1 ≤ M ′ ≤ M ,
∂iM′−1

. . . ∂i1A → ∂iM′ . . . ∂i1A is 1-inherited,21 ∂iM′ . . . ∂i1A is 1-standard, non-degenerate, and

that deg(∂iM . . . ∂i1A) = 1.22

Proof. The proof is routine and almost identical to [11, Theorem 4.2]; the additional requirements
“that for all 1 ≤ M ′ ≤ M , ∂iM′−1

. . . ∂i1A → ∂iM′ . . . ∂i1A is 1-inherited, ∂iM′ . . . ∂i1A is a non-

degenerate and 1-standard” follows directly from the proof (see also [10, Theorem 4.6], and its
footnote). �

3.2. Coefficient tracking. While Lemma 3.5 asserts that one can always transform a PET-
tuple A into a new PET-tuple ∂iM′ . . . ∂i1A of degree 1 using the vdC operations, it provides
no information on the relation between the coefficients of the polynomials in ∂iM′ . . . ∂i1A and
that in the original PET-tuple A. Such information will be essential in computing the upper
bound of S(A, f, κ). To overcome this difficulty, in [10, 11], we introduced a machinery to keep
track of the coefficients of relevant polynomials. In this paper, we adopt an approach similar to
[10] to control the coefficients. This section generalizes the results in [10, Section 5] to variable
polynomials.

Let p = (pN,1, . . . , pN,k)N denotes a non-degenerate family of vectors of variable polynomials
of degree at most K. Write

pN,i(n) =

K
∑

v=0

bN,i,vn
v,

21∂iK . . . ∂i1A is understood as A when K = 0
22If deg(A) = 1, then one can take M = 0, and the claim is trivial.
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where bN,i,v ∈ Rd. For N ∈ N, r ∈ Q, v ∈ N0 and 0 ≤ i ≤ k, we set 0 ≤ i, j ≤ k, i 6= j, we set

QN,r,i,v(p) := {r(bN,w,v − bN,i,v) : 0 ≤ w ≤ k}.
For 0 ≤ i, j ≤ k, i 6= j, let vi,j be the largest integer such that bN,i,vi,j 6= bN,j,vi,j and set

G′
N,i,j(p) := spanQ{bN,i,vi,j − bN,j,vi,j}.

Let q = (qN,1, . . . , qN,ℓ)N denote a family variable polynomials, with

qN,i(n;h1, . . . , hs) =
∑

b,a1,...,as∈N0,b+a1+···+as≤K

uN,i(b, a1, . . . , as)n
bha11 . . . hass

for some K ∈ N0 and some uN,i(b, a1, . . . , as) ∈ Rd. For b, a1, . . . , as ∈ N0, let

uN (q, b; a1, . . . , as) := (uN,1(b, a1, . . . , as), . . . , uN,ℓ(b, a1, . . . , as))

and u(q, b; a1, . . . , as) := (uN (q, b; a1, . . . , as))N .

Definition (Types and symbols of level data). For all v ∈ N0, r ∈ Q, and 0 ≤ i ≤ k, we say that
a sequence of ℓ-tuples u = (uN,1, . . . , uN,ℓ)N , uN,i ∈ R is of type p(r, i, v) if

uN,1, . . . , uN,ℓ ∈ QN,r,i,v(p), and uN,1 = r(bN,1,v − bN,i,v)

when N is sufficiently large.
Let u = (uN,1, . . . , uN,ℓ)N be of type p(r, i, v). Suppose that

(uN,1, . . . , uN,ℓ) = (r(bN,w1,v − bN,i,v), . . . , r(bN,wℓ,v − bN,i,v)),

for some 0 ≤ w1, . . . , wℓ ≤ k for all N sufficiently large. We call w := (w1, . . . , wℓ) a symbol of
u. (Note that we always have w1 = 1.)

Definition. Let S denote the set of all (a, a′) ∈ N2
0 such that a and a′ are both 0 or both different

than 0. Let p,q be polynomial families of degree at least 1. We say that q satisfies (P1)–(P4)
with respect to p if its level data u(q, ∗) satisfy:

(P1) For all a1, . . . , as, b ∈ N, there exist r ∈ Q, 0 ≤ i ≤ k, v ∈ N0 such that u(q, b; a1, . . . , as)
is of type p(r, i, v). Moreover, we may choose the type and symbol for all of u(q, b; a1, . . . , as)
in a way such that (P2)–(P4) hold, where:

(P2) Suppose that u(q, b; a1, . . . , as) is of type p(r, i, v), then r =
(b+a1+···+as

b,a1,...,as

)

and v =

b+ a1 + · · · + as (in particular, r 6= 0).23

(P3) Suppose that u(q, b; a1, . . . , as) is of type p(r, i, v) and u(q, b′; a′1, . . . , a
′
s) is of type

p(r′, i′, v′). If (a1, a
′
1), . . . , (as, a

′
s) ∈ S, then i = i′ and u(q, b; a1, . . . , as), u(q, b

′; a′1, . . . , a
′
s)

share a symbol w.
(P4) For any u(q, b; a1, . . . , as), the first coordinate w1 of its symbol (w1, . . . , wℓ) equals to 1.
For convenience we say that a PET-tuple A = (s, ℓ,q) satisfies (P1)–(P4) if the polynomial

family q associated to A satisfies (P1)–(P4).

Proposition 3.6. Let A = (s, ℓ,q) be a non-degenerate PET-tuple and 1 ≤ ρ ≤ ℓ. Assume that
A → ∂ρA is 1-inherited. If A satisfies (P1)–(P4), then ∂ρA also satisfies (P1)–(P4).

23Here
(

b+a1+···+as

b,a1,...,as

)

:= (b+a1+···+as)!
b!a1!...as!

.
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Proposition 3.7. Suppose that (P1)–(P4) hold for some non-degenerate q with respect to p.
Then for all 0 ≤ m ≤ ℓ,m 6= 1 and N sufficiently large, the group

HN,1,m(q) := spanQ

{

uN,1(q, b; a1, . . . , as)− uN,m(q, b; a1, . . . , as) : (b, a1, . . . , as) ∈ Ns+1
0 , b 6= 0

}

contains at least one of the groups G′
N,1,j(p), 0 ≤ j ≤ k, j 6= 1.

Remark 3.8. The proofs of Propositions 3.6 and 3.7 are almost identical to Propositions 5.6
and 5.7 of [10], for L = 1, modulo the following differences:

• Propositions 3.6 and 3.7 are for variable polynomials while Propositions 5.6 and 5.7 of
[10] are about polynomials;

• the polynomials in Propositions 3.6 and 3.7 take values in R while the ones in Proposi-
tions 5.6 and 5.7 of [10] take values in Q;

• the groups HN,1,m(q) and G′
N,1,j(p) defined and used in Proposition 3.7 are different

from the groups H1,m(q) and G1,j(p) defined and used in [10, Proposition 5.7] (we do

not intersect these group with Zd here).

One can easily check that the differences mentioned above do not affect the proofs in [10], and
the same arguments can be used to prove Propositions 3.6 and 3.7 without difficulty. We leave
the details to the interested readers.

4. Bounding multiple ergodic averages with Host-Kra seminorms

In this section we prove the Host-Kra-type bounds that we need for our main averages. More
specifically, we prove Proposition 4.1 which treats the basic, linear variable polynomial case, and
Theorem 4.4, which treats the case of variable polynomials of leading coefficient 1 (i.e., the ones
that we are dealing with in our study).

We start with the definition of Host-Kra seminorms, which is a fundamental tool in studying
problems related to multiple averages, and they were first introduced in [25] for ergodic Z-
systems. A variation of these seminorms in the context of Zd-systems was introduced in [24]. As
in [11], we will use a slightly more general version of these characteristic factors (see also [34] for
a similar approach).

For a Zd-system (X,B, µ, (Tn)n∈Zd) and a subgroup H of Zd, I(H) denotes the sub-σ-algebra
of (Th)h∈H -invariant sets, i.e., sets A ∈ B such that ThA = A for all h ∈ H. For an invariant
sub-σ-algebra A of B, the measure µ ×A µ denotes the relative independent product of µ with
itself over A. That is, µ×A µ is the measure defined on the product space X ×X as

∫

X×X
f ⊗ g d(µ×A µ) =

∫

X
E(f |A)E(g|A)dµ

for all f, g ∈ L∞(µ).
Let H1, . . . ,Hk be subgroups of Zd. Define

µH1 = µ×I(H1) µ

and for k > 1,

µH1,...,Hk
= µH1,...,Hk−1

×I(H[k−1]
k )

µH1,...,Hk−1
,

where H
[k−1]
k denotes the subgroup of (Zd)2

k−1
consisting of all the elements of the form hk×· · ·×

hk (2k−1 copies of hk) for some hk ∈ Hk. For f ∈ L∞(µ), its Host-Kra seminorm |||f |||H1,...,Hk
is
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defined by

|||f |||2kH1,...,Hk
:=

∫

X[k]

∏

ǫ∈{0,1}k
C|ǫ|f dµH1,...,Hk

,

where X [k] = X × · · ·×X (2k copies X), |ǫ| = ǫ1+ . . .+ ǫk and C is the conjugation map f 7→ f .
For convenience, we adopt a flexible way to write the Host-Kra seminorms combining the

aforementioned notation. For example, if A = {H1,H2}, then the notation ||| · |||A,H3,H
×2
4 ,(Hi)i=5,6

refers to ||| · |||H1,H2,H3,H4,H4,H5,H6 . For g1, . . . , gt ∈ Zd, we denote ||| · |||Tg1 ,...,Tgt
as ||| · |||H1,...,Ht ,

where each Hi is generated by gi.
The following proposition, which has at the beginning an argument similar to that of [15,

Lemma 4.7], allows us to bound weighted multiple ergodic averages with certain linear variable
polynomial iterates uniformly by Host-Kra seminorms.

Proposition 4.1. Let (X,B, µ, (Tn)n∈Zd) be a Zd-system, ℓ ∈ N and f1, . . . , fℓ ∈ L∞(µ) be

bounded by 1. Let k1, . . . , kℓ ∈ Zd and let (rN,m)N,m be a sequence in Zd. If ℓ > 1, we have that

(9) lim sup
N→∞

sup
|cn|≤1

∥

∥

∥

∥

∥

1

N

N
∑

n=1

cn

ℓ
∏

m=1

T kmn+rN,mfm

∥

∥

∥

∥

∥

2

≪ℓ |||f1|||T k1 ,T k1 ,T k1−k2 ,...,T k1−kℓ .

Furthermore, if ℓ = 1, then the left hand side of (9) is bounded by
∥

∥E(f1 ⊗ f1|I(T k1 × T k1))
∥

∥

1/2

L2(µ×µ)
.

Remark 4.2. For Proposition 4.1 to be useful in the proof of Theorem 4.4, it is crucial that the
constant that appears in (9) depends only on the number of linear iterates. We highlight the
fact that this would not be the case if we had, e.g., iterates of the form [αmn], for vectors αm of
non-integer coordinates (the constant would then depend on α1, . . . , αℓ too).

We need the following lemma in the proof of Proposition 4.1.

Lemma 4.3. For any sequence f : Z → C bounded by 1, if limN→∞ En∈[−N,N ]f(n) exists, then

lim
N→∞

En∈[−N,N ]
2(N + 1− |n|)

N + 1
f(n) = lim

N→∞
En∈[−N,N ]f(n).

Proof. We have the following relation

En∈[−N,N ]
2(N + 1− |n|)

N + 1
f(n) =

2

(2N + 1)(N + 1)

N
∑

n=−N

N
∑

M=|n|
f(n)

=
2

(2N + 1)(N + 1)

N
∑

M=0

M
∑

n=−M

f(n)

=
2

(2N + 1)(N + 1)

N
∑

M=0

(2M + 1)En∈[−M,M ]f(n).

Noting that limN→∞
∣

∣

∣

2
(2N+1)(N+1)

∑N
M=0(2M + 1)− 1

∣

∣

∣
= 0, the claim follows. �

Proof of Proposition 4.1. If ℓ = 1, we let B :=
∥

∥E(f1 ⊗ f1|I(T k1 × T k1))
∥

∥

1/2

L2(µ×µ)
, while if ℓ > 1

we set B := |||f1|||T k1 ,T k1 ,T k1−k2 ,...,T k1−kℓ . For every N ∈ N, and 1 ≤ n ≤ N, pick |cN,n| ≤ 1, so
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that the corresponding norm in the left hand side of (9) is 1/N close to its supremum sup|cn|≤1.
So, it suffices to show that

(10) lim sup
N→∞

∥

∥

∥

∥

∥

1

N

N
∑

n=1

cN,n

ℓ
∏

m=1

T kmn+rN,mfm

∥

∥

∥

∥

∥

2

≪ℓ B.

To this end, it suffices to show

(11) lim sup
N→∞

sup
‖f0‖∞≤1

1

N

N
∑

n=1

∣

∣

∣

∣

∣

∫

f0 ·
ℓ
∏

m=1

T kmn+rN,mfm dµ

∣

∣

∣

∣

∣

≪ℓ B
2.

Indeed, assuming (11) and using the triangle inequality, whenever fN,0 ∈ L∞(µ) with ‖fN,0‖∞ ≤
1 for N ∈ N, we have

(12) lim sup
N→∞

∣

∣

∣

∣

∣

1

N

N
∑

n=1

cN,n

∫

fN,0 ·
ℓ
∏

m=1

T kmn+rN,mfm

∣

∣

∣

∣

∣

dµ ≪ℓ B
2.

Using (12) with the conjugate of 1
N

∑N
n=1 cN,n

∏ℓ
m=1 T

kmn+rN,mfm in place of fN,0, we get (10).
We now prove (11). Given N ∈ N and ‖f0‖∞ ≤ 1, we have

(

1

N

N
∑

n=1

∣

∣

∣

∣

∣

∫

f0 ·
ℓ
∏

m=1

T kmn+rN,mfm dµ

∣

∣

∣

∣

∣

)2

≤ 1

N

N
∑

n=1

∣

∣

∣

∣

∣

∫

f0 ·
ℓ
∏

m=1

T kmn+rN,mfm dµ

∣

∣

∣

∣

∣

2

=

∫

FN,0 ·
1

N

N
∑

n=1

Sk1nF1 ·
ℓ
∏

m=2

SkmnFN,m d(µ× µ),

where S = T × T , FN,0 = T−rN,1f0 ⊗ T−rN,1f0, F1 = f1 ⊗ f1 and FN,m = T rN,m−rN,1fm ⊗
T rN,m−rN,1fm. Using the Cauchy-Schwarz inequality, we can bound the latter expression by

(13)

∥

∥

∥

∥

∥

1

N

N
∑

n=1

Sk1nF1 ·
ℓ
∏

m=2

SkmnFN,m

∥

∥

∥

∥

∥

L2(µ×µ)

.

Note that this bound is uniform for all ‖f0‖∞ ≤ 1. Consider the case ℓ = 1. Letting N → ∞ and
using the von Neumann Ergodic Theorem, we get that the limit of (13) (for ℓ = 1) as N → ∞
can be bounded by

‖E(F1|I(Sk1))‖2 = ‖E(f1 ⊗ f1|I(T k1 × T k1))‖L2(µ×µ).

Hence, we obtain the desired conclusion for ℓ = 1.
We now consider the case ℓ ≥ 2. Let 0 ≤ t ≤ ℓ−1, and denote h′ := (h, ht+1) := (h1, . . . , ht+1)

and ǫ
′ := (ǫ, ǫt+1) := (ǫ1, . . . , ǫt+1). For a1, . . . , aℓ−t ∈ Zd and b1, . . . , bt ∈ Zd, consider the

quantity S̃(t, κ, (ai)
ℓ−t
i=1, (bi)

t
i=1) defined as

(14) Eh∈[−M,M ]t sup
‖F2‖∞,...,‖Fℓ−t‖∞≤1

∥

∥

∥

∥

∥

∥

En∈[N ]

(

Sa1n
∏

ǫ∈{0,1}t

t
∏

i=1

Sbihiǫi
)

C|ǫ|F1 ·
ℓ−t
∏

m=2

SamnFm

∥

∥

∥

∥

∥

∥

κ

2

.

Note that S̃(0, κ, (ki)
ℓ
i=1, ∅)24 is a bound for (13) to the power of κ.

24Here we adopt the natural convention that when t = 0,
∏

ǫ∈{0,1}t
(

∏t
i=1 S

bihiǫi
)

C|ǫ| is the identity map.
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We claim that for all 0 ≤ t ≤ ℓ− 1, and κ ∈ N, we have

(15) S̃(t, 2κ, (ai)
ℓ−t
i=1, (bi)

t
i=1) ≪ℓ,κ

1

M
+
(M

N

)κ
+ S̃(t+ 1, κ, (a′i)

ℓ−t−1
i=1 , (b′i)

t+1
i=1),

where a′i = ai − aℓ−t for 1 ≤ i ≤ ℓ− t− 1, and b′i = bi for 1 ≤ i ≤ t and b′t+1 = a1.

Indeed, by Lemma 3.1, S̃(t, 2κ, (ai)
ℓ−t
i=1, (bi)

t
i=1) can be bounded by Oκ,ℓ(1) times

Eh∈[−M,M ]t sup
‖F2‖∞,...,‖Fℓ−t‖∞≤1

(

Ehs+1∈[−M,M ]

∣

∣

∣
En∈[N ]

〈(

Sa1n
∏

ǫ∈{0,1}t

t
∏

i=1

Sbihiǫi
)

C|ǫ|F1 ·
ℓ−t
∏

m=2

SamnFm,

(

Sa1(n+ht+1)
∏

ǫ∈{0,1}t

t
∏

i=1

Sbihiǫi
)

C|ǫ|F1 ·
ℓ−t
∏

m=2

Sam(n+ht+1)Fm

〉∣

∣

∣

κ

+
1

M
+
(M

N

)κ)

.

Noting that

(

Sa1n
∏

ǫ∈{0,1}t

t
∏

i=1

Sbihiǫi
)

C|ǫ|F1 ·
(

Sa1(n+ht+1)
∏

ǫ∈{0,1}t

t
∏

i=1

Sbihiǫi
)

C|ǫ|F1

= Sa1n
∏

ǫ′∈{0,1}t+1

(

t+1
∏

i=1

Sbihiǫi
)

C|ǫ′|F1,

and using the invariance of the measure, the previous expression equals to

Eh∈[−M,M ]t sup
‖F2‖∞,...,‖Fℓ−t‖∞≤1

( 1

M
+
(M

N

)κ

+ Eht+1∈[−M,M ]

∣

∣

∣En∈[N ]

〈

Sa1n
∏

ǫ′∈{0,1}t+1

(

t+1
∏

i=1

Sbihiǫi
)

C|ǫ′|F1 ·
ℓ−t−1
∏

m=2

Samn
(

Sht+1Fm · Fm

)

,

Saℓ−tn
(

Sht+1Fℓ−t · F ℓ−t

)〉∣

∣

∣

κ)

.

Composing by S−aℓ−tn, we get that the previous quantity is equal to

Eh∈[−M,M ]t sup
‖F2‖∞,...,‖Fℓ−t‖∞≤1

( 1

M
+
(M

N

)κ

+ Eht+1∈[−M,M ]

∣

∣

∣
En∈[N ]

〈(

S(a1−aℓ−t)n
∏

ǫ′∈{0,1}t+1

t+1
∏

i=1

Sbihiǫi
)

C|ǫ′|F1

·
ℓ−t−1
∏

m=2

S(am−aℓ−t)n
(

Sht+1Fm · Fm

)

, Sht+1Fℓ−t · F ℓ−t

〉∣

∣

∣

κ)

.
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By the Cauchy-Schwarz inequality we can bound this expression by Oκ(1) times

Eh∈[−M,M ]t sup
‖F2‖∞,...,‖Fℓ−t‖∞≤1

( 1

M
+
(M

N

)κ

+ Eht+1∈[−M,M ]

∥

∥

∥En∈[N ]

(

S(a1−aℓ−t)n
∏

ǫ′∈{0,1}t+1

t+1
∏

i=1

Sbihiǫi
)

C|ǫ′|F1

·
ℓ−t−1
∏

m=2

S(am−aℓ−t)n
(

Sht+1Fm · Fm

)∥

∥

∥

κ

2

)

≤ Eh′∈[−M,M ]t+1 sup
‖F2‖∞,...,‖Fℓ−t−1‖∞≤1

∥

∥

∥
En∈[N ]

(

S(a1−aℓ−t)n
∏

ǫ′∈{0,1}t+1

t+1
∏

i=1

Sbihiǫi
)

C|ǫ′|F1

·
ℓ−t−1
∏

m=2

S(am−aℓ−t)nFm

∥

∥

∥

κ

2
+

1

M
+
(M

N

)κ
.

This proves (15).

Using the inequality (15) repeatedly, starting from S̃(0, 2ℓ, (ki)
ℓ
i=1, ∅), and keeping track of the

coefficients of ai, we deduce that the 2ℓ-th power of (13) is bounded by Oℓ(1) times

1

M
+Oℓ

(M

N

)

+ Eh∈[−M,M ]ℓ−1

∥

∥

∥

∥

∥

∥

En∈[N ]

(

Sbℓn
∏

ǫ∈{0,1}ℓ−1

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1

∥

∥

∥

∥

∥

∥

2

2

,

where (b1, . . . , bℓ) = (k1, k1 − k2, . . . , k1 − kℓ).
Using Lemma 3.2, we get

Eh∈[−M,M ]ℓ−1

∥

∥

∥
En∈[N ]

(

Sbℓn
∏

ǫ∈{0,1}ℓ−1

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1

∥

∥

∥

2

2

≤ 6M

N
+ Eh∈[−M,M ]ℓ−1Ex,y∈[M ]

(

En∈[N ]

〈(

Sbℓ(n+x)
∏

ǫ∈{0,1}ℓ−1

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1,

(

Sbℓ(n+y)
∏

ǫ∈{0,1}ℓ−1

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1

〉)

.

(16)
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Composing by S−bℓ(n+y), the last line of (16) is equal to

6M

N
+ Eh∈[−M,M ]ℓ−1Ex,y∈[M ]

(

En∈[N ]

〈(

Sbℓ(x−y)
∏

ǫ∈{0,1}ℓ−1

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1,

∏

ǫ∈{0,1}ℓ−1

(

ℓ−1
∏

i=1

Sbihiǫi
)

C|ǫ|F1〉
)

=
6M

N
+ Eh′∈[−M,M ]ℓ

(2M + 1)(M + 1− |hℓ|)
(M + 1)2

·
∫

X×X

∏

ǫ′∈{0,1}ℓ

(

ℓ
∏

i=1

Sbihiǫi
)

C|ǫ′|F1 d(µ × µ)

=
6M

N
+O

( 1

M

)

+ 2Eh′∈[−M,M ]ℓ
M + 1− |hℓ|

M + 1
·
∫

X×X

∏

ǫ′∈{0,1}ℓ

(

ℓ
∏

i=1

Sbihiǫi
)

C|ǫ′|F1 d(µ× µ).

(17)

Consider the iterated average

Eh1,...,hℓ∈Z

∫

X×X

∏

ǫ′∈{0,1}ℓ

(

ℓ
∏

i=1

Sbihiǫi
)

C|ǫ′|F1 d(µ × µ).(18)

Inductively, using [11, Lemma 2.4 (iii)], we have that (18) equals to |||F1|||2ℓSb1 ,...,Sbℓ
. Using Lemma 4.3

(repeatedly for (18)), the mean ergodic theorem, and the definition of Host-Kra seminorms, we
have that the last line of (17) can be bounded by

2|||F1|||2
ℓ

Sb1 ,...,Sbℓ
+

6M

N
+O

( 1

M

)

.

By [10, Lemma 3.4],

|||F1|||Sk1 ,Sk1−k2 ,...,Sk1−kℓ = |||f1 ⊗ f1|||Sk1 ,Sk1−k2 ,...,Sk1−kℓ ≤ |||f1|||2T k1 ,T k1 ,T k1−k2 ,...,T k1−kℓ
.

By first letting N → ∞ and then M → ∞, we deduce that (12) is bounded by a constant,
depending only on ℓ, times |||f1|||T k1 ,T k1 ,T k1−k2 ,...,T k1−kℓ , as was to be shown. �

Theorem 4.4. Let ℓ, κ ∈ N, A = (0, ℓ,p) be a 1-standard PET-tuple with p = (pN,1, . . . , pN,ℓ)N
of the form

pN,j(n) = ejn
K + p′N,j(n), 1 ≤ j ≤ ℓ,

for some K ∈ N and variable polynomials p′N,j : Z → Rℓ of degree less than K, when N is

sufficiently large. Let (X,B, µ, (Tn)n∈Zd) be a Zd-system and f ∈ L∞(µ). Then, there exists
D = Oℓ,K(1) such that

if |||f |||{
T×D
e1

,(Te1−ej
)×D

}

1≤j≤ℓ,j 6=1

= 0, then we have that S(A, f, κ) = 0.

Moreover, in the special case where ℓ = 1,

if E(f ⊗ f | I((T1 × T1)
a)) = 0, for all a ∈ Z \ {0}, then S(A, f, κ) = 0.25

25In particular, if |||f |||T1 ,T1
= 0, then we have S(A, f, κ) = 0 by [10, Lemma 3.4] and [11, Lemma 2.4 (iv)].
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Proof. If ℓ = 1, then denote A′ := ∂1 . . . ∂1A with ∂1 repeated K − 1 times. It is not hard to
compute that A′ = (K − 1, 1, (qN )N ), where

qN (n;h1, . . . , hK−1) = e1K!h1 . . . hK−1n+ rN (h1, . . . , hK−1)

for some rN (h1, . . . , hK−1) ∈ Rd when N is sufficiently large. By Lemma 3.4, S(A, f, 2K−1) ≪K

S(A′, f, 1). By Proposition 4.1, and the assumption that E(f ⊗ f | I((T1 × T1)
a)) = 0 for all

a 6= 0, we get that

lim sup
N→∞

sup
|cn|≤1

∥

∥

∥
E0≤n≤NcnT

[K!h1...hK−1n+rN (h1,...,hK−1)]f
∥

∥

∥

2
= 0,

provided that h1 . . . hK−1 6= 0. So S(A′, f, 1) = 0 since the set of (h1, . . . , hK−1) such that
h1 . . . hK−1 = 0 is of zero density. So S(A, f, 2K−1) = 0, which implies that S(A, f, κ) = 0.

We now consider the case ℓ > 1. By Lemma 3.5, there exist r ∈ N depending only on K
and ℓ and i1, . . . , ir ∈ N such that writing, A′ := ∂ir . . . ∂i1A, we have that deg(A′) = 1 and A′

is 1-standard and non-degenerate, and that each step ∂it−1 . . . ∂i1A → ∂it . . . ∂i1A is 1-inherited.
By Lemma 3.4, in order to show that S(A, f, 2r) = 0, it suffices to show that S(A′, f, 1) = 0.

Assume that A′ = (r, ℓ′, (qN,m)N ). Let p := (pN (n)e1, . . . , pN (n)ed)N denote the initial tuple
of variable polynomials in the PET-tuple A and q = (qN,1, . . . , qN,ℓ′)N denote the tuple of
variable polynomials in the PET-tuple A′. Since p satisfies (P1)–(P4) with respect to p, by
Proposition 3.6, q also satisfies (P1)–(P4) with respect to p.

Since deg(A′) = 1, we may assume that

(19) qN,m(n, h1, . . . , hr) = cN,m(h1, . . . , hr)n+ rN,m(h1, . . . , hr)

for some polynomials cN,m : Zr → Rd with degree, in terms of the variables h1, . . . , hr, less than

K26 and some rN,m(h1, . . . , hr) ∈ Rd when N is sufficiently large.

Claim. For all 1 ≤ m ≤ ℓ′, every cN,m is equal to the same polynomial cm : Zr → Zd when
N is sufficiently large.

Write

qN,m(n;h1, . . . , hs) =
∑

b,a1,...,as∈N0,b+a1+···+as≤K

uN,m(b, a1, . . . , as)n
bha11 . . . hass

and

pN,m(n) =
∑

v∈N0,v≤K

bN,m,vn
v

for some uN,m(b, a1, . . . , as) ∈ Rd, bN,m,v ∈ Rd for all 1 ≤ m ≤ ℓ′. It suffices to show that for

all a1, . . . , as ∈ N0 and 1 ≤ m ≤ ℓ′, uN,m(1, a1, . . . , as) equals to a same vector in Zd when N is
large enough.

We may assume that each u(q, 1; a1, . . . , as) is associated with a type and a symbol so
that (P1)–(P4) hold. Fix any a1, . . . , as ∈ N0. By (P1) and (P2), we may assume that
u(q, 1; a1, . . . , as) is associated with the type (r, i, v) and symbol (1, w2, . . . , wℓ′), where r =
(1+a1+···+as

1,a1,...,as

)

and v = 1 + a1 + · · · + as. If all of uN,m(q, 1; a1, . . . , as), 1 ≤ m ≤ ℓ′ are 0 when

N is sufficiently large, then we are done. If not, then there exists 1 ≤ m ≤ ℓ′ such that

26Here we used the obvious fact that if A is of degree at most K in terms of all the variables n, hi, then so is
∂tA.
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uN,m(q, 1; a1, . . . , as) = r(bN,wm,v − bN,i,v) is not constant 0 when N is sufficiently large. Then
wm 6= i and v ≤ K.

If v = K, then uN,m(q, 1; a1, . . . , as) = r(bN,wm,K − bN,i,K) = r(ewm − ei) 6= Zd\{0} when N
is sufficiently large and we are done.

If v < K, then setting b′ = K − v + 1, we have b′ ≥ 2. By (P3), u(q, b′; a1, . . . , as) is of

type (r′, i, v′), for some v′, where r′ =
( v′

b′,a1,...,as

)

6= 0. By (P2), v′ = b′ + a1, . . . , as = K. Since

wm 6= i, we conclude that uN,m(q, b′; a1, . . . , as) = r′(bN,wm,K − bN,i,K) = r′(ewm − ei) 6= 0 when
N is sufficiently large, a contradiction to the fact that deg(q) = 1. This completes the proof of
the claim.

Denote h := (h1, . . . , hr). By the claim, we have

S(A′, f, 1) = Eh∈Zr lim sup
N→∞

sup
|cn|≤1

sup
‖g2‖∞,...,‖gr‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤Ncn

ℓ′
∏

m=1

T cm(h)n+[rN,m(h)]gm

∥

∥

∥

∥

∥

2

,

where g1 = f . By Proposition 4.1,

lim sup
N→∞

sup
|cn|≤1

sup
‖g2‖∞,...,‖gr‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤Ncn

ℓ′
∏

m=1

T cm(h)n+[rN,m(h)]gm

∥

∥

∥

∥

∥

2

is bounded by C · |||f |||T c1(h),T c1(h),T c1(h)−c2(h),...,T c1(h)−cℓ(h) , where C depends only on ℓ′, which can

be bounded in terms of ℓ and K.27 So S(A′, f, 1) is bounded by

(20) C · Eh∈Zr |||f1|||T c1(h),T c1(h),T c1(h)−c2(h),...,T c1(h)−cℓ(h) .

Assume that
cm(h) =

∑

a1,...,ar∈N0,a1+···+ar≤K

ha11 . . . harr um(a1, . . . , ar)

for some um(a1, . . . , ar) ∈ Qd. Let

Hm := G(u1(a1, . . . , ar)− um(a1, . . . , ar) : a1, . . . , ar ∈ N0).

for 0 ≤ m ≤ ℓ,m 6= 1. By [10, Proposition 5.2], there exists D ∈ N depending only on ℓ and K
such that

Eh∈Zr |||f1|||T c1(h),T c1(h),T c1(h)−c2(h),...,T c1(h)−cℓ(h) = 0

if |||f |||H×D
m ,0≤m≤ℓ,m6=1 = 0. 28

Since q satisfies (P1)–(P4) with respect to p, by Proposition 3.7, for all 0 ≤ m ≤ r,m 6= 1,
HN,1,m(q) contains one of G′

N,1,j(p), 0 ≤ j ≤ d, j 6= 1 for all N sufficiently large. In our case,

HN,1,m(q) = spanQ(u1(a1, . . . , ar)− um(a1, . . . , ar) : a1, . . . , ar ∈ N0)

and
G′

N,1,j(p) = spanQ{e1 − ej}.
So, each Hm := HN,1,m(q) ∩ Zd contains one of spanZ{e1 − ej}, 0 ≤ j ≤ d, j 6= 1. Hence, if
|||f |||

T×D′
e1

,T×D′
e2−e1

,...,T×D′
ed−e1

= 0, where D′ = Dd, then as a consequence of [11, Lemma 2.4 (v)] we

have |||f |||H×D
m ,0≤m≤ℓ,m6=1 = 0, and thus the average is 0. �

27We remark that this is where we crucially used the fact that Proposition 4.1 depends only on the number of
linear iterates.

28We remark at this point that it is [10, Proposition 5.2] that crucially uses concatenation results from [35].
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Remark 4.5. The reason why we cannot obtain the more general assumption log x ≺ h(x)
instead of log x ≺ sh(x) in Theorem 1.1 (in which case we would also cover the case where h
is a polynomial), is that we cannot extend Theorem 4.4 when the leading coefficients of the
pN,j’s are equal to some non-integer α. In this case, we are able to obtain an upper bound for
S(A′, f, 1) similar to (20), but with the constant C depending on h. This prevent us from using
[10, Proposition 5.2] or any concatenation result from [35] to get a satisfactory estimate.

5. Proof of main result

We prove Theorem 1.1 in this section. Combining the estimates in the previous section, we first
provide a Host-Kra seminorm upper bound for multiple ergodic averages with non-polynomial
iterates.

Theorem 5.1. Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transforma-
tions, a be a function, L ∈ H a positive function with 1 ≺ L(x) ≺ x, and (pN )N a sequence of
functions such that for all N ∈ N and 0 ≤ r ≤ L(N), we have

a(N + r) = pN (r) + eN,r, with eN,r ≪ 1.

Assume additionally that pN are polynomials such that, when N is sufficiently large, deg(pN ) =

K, for some K ∈ N, and the leading coefficient of pN equals to aN := a(K)(N)/K!, where we
have

lim
N→∞

L(N)|aN | 1
K = ∞, lim

N→∞
aN = 0, and L(N) ≪ |aN |−

K+1
K2 .

There exists D ∈ N depending only on K and d such that if |||f1|||(T1,T1T
−1
2 ,...,T1T

−1
d )×D = 0, then

(21) lim sup
N→∞

∥

∥

∥
E1≤n≤NT

[a(n)]
1 f1 · . . . · T [a(n)]

d fd

∥

∥

∥

2
= 0.

Moreover, when d = 1, (21) holds if ‖E(f1 ⊗ f1|I((T1 × T1)
a))‖2 = 0 for all a ∈ Z\{0}.

(A similar result holds if f1 is replaced by any of the f2, . . . , fd.)

We briefly explain the idea of the proof of Theorem 5.1 using the Examples 1 and 2. We have
already seen (in Section 2) that for these examples, the Hardy field iterates can be approximated
by variable polynomials that can be transformed in such a way that their leading coefficients are
equal to 1. Then, we may use Theorem 4.4 to get the desired seminorm control.

Proof of Theorem 5.1. Since a(N + r) = pN (r) + eN,r, N ∈ N, 0 ≤ r ≤ L(N), it suffices by
Proposition 2.1 to show

lim sup
N→∞

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L(N)cn

d
∏

i=1

T
[pN (n)]
i fi

∥

∥

∥

∥

∥

2

= 0.

Since pN (n) = aNnK + p′N (n), for some (p′N )N of degree less than K and (aN )N , L satisfy the
assumptions of Proposition 2.2, it suffices to show

(22) lim sup
N→∞

sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L̃(N)cn

d
∏

i=1

T
[nK+p̃N (n)]
i fi

∥

∥

∥

∥

∥

2

= 0

for the appropriate (p̃N )N of degree less than K and the positive function L̃ with 1 ≺ L̃(x) ≺ x
given by Proposition 2.2.
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If (22) fails, then there exist ǫ > 0 and a subsequence (Nj)j of integers such that

(23) sup
|cn|≤1

sup
‖f2‖∞,...,‖fd‖∞≤1

∥

∥

∥

∥

∥

E0≤n≤L̃(Nj)
cn

d
∏

i=1

T
[nK+p̃Nj

(n)]

i fi

∥

∥

∥

∥

∥

2

> ǫ

for all j ∈ N. Passing to another subsequence if necessary, we may assume without loss of
generality that Mj := [L̃(Nj)] is strictly increasing in j.

Let A = (0, d,q) be the 1-standard PET-tuple given by qN,i(n) = (nK + qN (n))ei, 1 ≤ i ≤ d,
N ∈ N, where qMj

:= p̃Nj and qN := 0 otherwise. By Theorem 4.4, for d > 1, S(A, f1, 1) = 0
if ‖f1‖(T1,T1T

−1
2 ,...,T1T

−1
d )×D = 0. In the d = 1 case, the same theorem implies S(A, f1, 1) = 0 if

∥

∥E(f1 ⊗ f1|I((T1 × T1)
a))
∥

∥

2
= 0 for all a ∈ Z\{0}.

By the construction of A, in both cases, we have that the left hand side of (23) converges to
0, a contradiction. This finishes the proof. �

Remark 5.2. The Hardy functions of interest satisfy the conclusion of Theorem 5.1 (for some
appropriate function L ∈ H and K ∈ N).

Indeed, let h(x) = sh(x) + ph(x) + eh(x) with log x ≺ sh(x). Since we can drop the bounded
error terms (see also the expression of h via variable polynomials below), it suffices to deal with
the case

h(x) = sh(x) + ph(x).

Let dph be the degree of ph and dsh be the degree of sh. If dph < dsh + 1, we set K := dsh + 1,
while if dph ≥ dsh + 1, we set K := dph + 1. By [36, Proposition A.2]29 we have that:

1 ≺ |s(K)
h (x)|− 1

K ≺ |s(K+1)
h (x)|− 1

K+1 ≺ x,

and since s
(K+1)
h is a Hardy field function, it is (eventually) monotone.

By the previous relation, we may choose L ∈ H such that

1 ≺ |s(K)
h (x)|− 1

K ≺ L(x) ≺ min
{

|s(K+1)
h (x)|− 1

K+1 , |s(K)
h (x)|−

K+1
K2
}

(for example take the geometric mean of the functions appearing above).30

Then, by the Taylor expansion, for all N, r ∈ N0, there exists ξN,r ∈ [N,N + r], such that

sh(N + r) = sh(N) + · · ·+ s
(K)
h (N)

K!
rK +

s
(K+1)
h (ξN,r)

(K + 1)!
rK+1.

If 0 ≤ r ≤ L(N), then, for N sufficiently large, using the monotonicity of s
(K+1)
h , we have that

∣

∣

∣

s
(K+1)
h (ξN,r)r

K+1

(K + 1)!

∣

∣

∣ ≤
∣

∣

∣

s
(K+1)
h (N)rK+1

(K + 1)!

∣

∣

∣ ≤
∣

∣

∣

s
(K+1)
h (N)L(N)K+1

(K + 1)!

∣

∣

∣≪ 1.

Denoting

pN(r) := ph(N + r) + sh(N) + · · · + s
(K)
h (N)

K!
rK ,

29We can use [36, Proposition A.2] since log x ≺ sh(x).
30Every two Hardy field functions are comparable, hence the minimum of the right hand side is (eventually)

one of the functions.
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we have
[h(N + r)] = [pN (r)] + eN,r,

with eN,r ≪ 1 (here we can also absorb the initial oh term). Since the assumptions of both

Proposition 2.1 and 2.2 are satisfied for h,L, pN and (s
(K)
h (N)/K!)N , L,K (noticing that for all

k ≥ K we have h(k) = s
(k)
h ) respectively, the function h satisfies the conclusion of Theorem 5.1.

We will now show that conditions (i) and (ii) of Theorem 1.1 are implied by the joint ergodicity

of (T
[h(n)]
1 )n, . . . , (T

[h(n)]
d )n.

Proof of the necessity of conditions (i) and (ii) in Theorem 1.1. To show (i), for any 1 ≤ i, j ≤
d, i 6= j, setting fk = 1 for k 6= {i, j}, and since strong convergence implies weak convergence,
we see that

lim
N→∞

En∈[N ]

∫

X
(TiT

−1
j )[h(n)]fi · fj dµ =

∫

X
fi dµ

∫

X
fj dµ

for all fi, fj ∈ L∞(µ). Thus, ((TiT
−1
j )[h(n)])n is an ergodic sequence, as desired.

To prove (ii), it suffices to show that for any f ∈ L∞(µ⊗d)

(24) lim
N→∞

En∈[N ](T1 × · · · × Td)
[h(n)]f =

∫

X
f dµ⊗d,

where convergence takes place in L2(µ⊗d). By a standard linearity and density argument, it
suffices to prove (24) for the case f = f1 ⊗ · · · ⊗ fd for some f1, . . . , fd ∈ L∞(µ).

We claim that both sides of (24) are equal to 0 if |||fi|||Ti,Ti = 0 for some 1 ≤ i ≤ d. Assume
that |||fi|||Ti,Ti = 0. By [11, Lemma 2.4 (iv)], |||fi|||Ta

i ,Ta
i
= 0 for all a 6= 0. By the proof of [11,

Lemma 5.2], this implies that E(f ⊗ f |I((S × S)a))‖2 = 0. Since h satisfies the conclusion of
Theorem 5.1, we have that the left hand side of (24) is 0.

On the other hand, |||fi|||Ti,Ti = 0, implies that
(
∫

X
|E(fi|I(Ti))|2dµ

)1/2

= |||fi|||Ti ≤ |||fi|||Ti,Ti = 0,

which in turn implies that
∫

X fi dµ =
∫

X E(fi|I(Ti)) dµ = 0; thus the right hand side of (24) is
0.

Therefore, it suffices to prove (24) under the assumption that each fi is measurable with respect
to ZTi,Ti , the sub σ-algebra of B such that |||f |||Ti,Ti = 0 ⇔ E(f |ZTi,Ti) = 0 for all f ∈ L∞(µ).

Since (T
[h(n)]
1 )n, . . . , (T

[h(n)]
d )n are jointly ergodic, by projecting to each coordinate, we have

that Ti is ergodic for µ for all 1 ≤ i ≤ d. By [11, Lemma 2.7], we may approximate each fi by
finite linear combinations of eigenfunctions of Ti. So, we may assume that for each fi we have
Tifi = λifi, for some λi ∈ S1. If one of f1, . . . , fd is 0 µ-a.e., then (24) holds trivially. Suppose
now that none of f1, . . . , fd is 0 a.e.. Since Ti is ergodic for each i, it follows that we may assume
that |fi| = 1 µ-a.e., for each i. If all the fi’s are constant, (24) holds trivially. If not, say fi0 is
not a constant, then λi0 6= 1 by the ergodicity of Ti0 . So

∫

X fi0 dµ = 0, and thus the right hand
side of (24) is 0. Consequently, we have reduced matters to showing that

lim
N→∞

En∈[N ](λ1 · · ·λd)
[h(n)] = 0.

This follows directly by the joint ergodicity assumption applied to the eigenfunctions f1, . . . , fd
described above, completing the proof. �
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In order to show that conditions (i) and (ii) in Theorem 1.1 are sufficient for joint ergodicity,
we use a criterion, first introduced by Frantzikinakis [14] and then generalized by Best and Ferré
Moragues [7].

Definition ([7]). We say that a collection of mappings a1, . . . , ak : Z
d → Zd is:

(a) good for seminorm estimates for the system (X,B, µ, (Tn)n∈Zd), if there exists M ∈ N

such that if f1, . . . , fk ∈ L∞(µ) and |||fℓ|||(Zd)×M = 0 for some ℓ ∈ {1, . . . , k}, then

lim
N→∞

1

Nd

∑

n∈[N ]d

k
∏

i=1

Tai(n)fi = 0,

where the convergence takes place in L2(µ).
(b) good for equidistribution for the system (X,B, µ, (Tn)n∈Zd), if for every α1, . . . , αk ∈

Spec ((Tn)n∈Zd) , not all of them being trivial, we have

lim
N→∞

1

Nd

∑

n∈[N ]d

exp(α1(a1(n)) + · · ·+ αk(ak(n))) = 0,

where exp(x) := e2πix for all x ∈ R, and

Spec ((Tn)n∈Zd) := {α ∈ Hom(Zd,T) : Tnf = exp(α(n))f, n ∈ Zd, for some non-zero f ∈ L2(µ)}.
It was shown in [7, Theorem 1.1] that for an ergodic system (X,B, µ, T1, . . . , Td) (meaning that

the group action generated by T1, . . . , Td is ergodic), a collection of mappings a1, . . . , ak : Z
d →

Zd, (Ta1(n))n, . . . , (Tak(n))n are jointly ergodic for µ31 if, and only if, they are good for seminorm
estimates and good for equidistribution for the system.

Proof of the sufficiency of conditions (i) and (ii) in Theorem 1.1. Fix any system (X,B, µ, T1,
. . . , Td) that satisfies conditions (i) and (ii). We use (X,B, µ, (Tn)n∈Zd) to denote the Zd-system
with Tei := Ti for 1 ≤ i ≤ d. Our goal is to use [7, Theorem 1.1] to show the desired joint
ergodicity. To do so, we will take hi(n1, . . . , nd) := eih(n1) for all (n1, . . . , nd) ∈ Nd, where ei is
the i-th canonical vector, (i.e., the hi’s depend only on the first coordinate of n). First, note that
(i) and (ii) imply that Ti, TiT

−1
j are ergodic for all 1 ≤ i, j ≤ d, i 6= j, which also implies that our

system is ergodic. By [7, Theorem 1.1], it suffices to show that for the system (X,B, µ, (Tn)n∈Zd),
the mappings h1, . . . , hd are good for seminorm estimates and good for equidistribution.

The fact that h1, . . . , hd are good for seminorm estimates can be argued as follows: note that

lim
N→∞

1

Nd

∑

n∈[N ]d

d
∏

i=1

Thi(n)fi = lim
N→∞

1

N

N
∑

n=1

d
∏

i=1

T
h(n)
i fi.

Since h satisfies the conclusion of Theorem 5.1, there exists D ∈ N depending only on d and the
degree of h(n) such that for all i ∈ {1, . . . , d},

|||fi|||(Ti,(TiT
−1
j )j 6=i)×D = 0 implies that lim

N→∞
1

Nd

∑

n∈[N ]d

d
∏

i=1

Thi(n)fi = 0.

31Here we mean that, for all bounded fi’s, we have limN→∞
1

Nd

∑

n∈[N]d Ta1(n)f1 · . . . ·Tak(n)fk =
∏k

i=1

∫

fi dµ.
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By [11, Corollary 2.5], since Ti, TiT
−1
j are ergodic for all 1 ≤ i, j ≤ d, i 6= j, we get that

|||fi|||(Ti,(TiT
−1
j )j 6=i)×D = 0 if, and only if, |||fi|||(Zd)×dD = 0. From this we have the good for

seminorm estimates condition.
Thus, it only remains to show that the collection of h1, . . . , hd is good for equidistribution.

Suppose, for the sake of contradiction, that h1, . . . , hd is not good for equidistribution. Then,
there exist α1, . . . , αd ∈ Spec ((Tn)n∈Zd), not all of them trivial, and a subsequence (Nj)j∈N of
N, such that

(25) lim
j→∞

1

Nd
j

∑

n∈[Nj ]d

exp(α1(h1(n)) + · · ·+ αd(hd(n))) exists and equals to c,

for some c 6= 0. For 1 ≤ i ≤ d, since αi ∈ Spec ((Tn)n∈Zd), there exists some nonzero fi ∈ L2(µ)

such that Tnfi = exp(αi(n))fi for all n ∈ Zd. Since (X,B, µ, T1, . . . , Td) is ergodic, we have that
|fi| is a non-zero constant µ-a.e.. Using (25), we have

lim
j→∞

1

Nj

Nj
∑

n=1

d
⊗

i=1

T
h(n)
i fi = lim

j→∞
1

Nd
j

∑

n∈[Nj ]d

d
⊗

i=1

Thi(n)fi

= lim
N→∞

1

Nd
j

∑

n∈[Nj ]d

d
⊗

i=1

exp(αi(hi(n)))fi = c

d
⊗

i=1

fi 6≡ 0.

On the other hand, since at least one of α1, . . . , αd is non-trivial, we have that
∫

Xd

⊗d
i=1 fi dµ

⊗d

=
∏d

i=1

∫

X fi dµ = 0, which contradicts condition (ii). Therefore, h1, . . . , hd are good for equidis-
tribution. �

6. An application of the method to more general iterates

In this section, we extend Theorem 1.1 to a wider class of functions.

Definition (Tempered functions). Let i ∈ N0. A real-valued function t which is (i + 1)-times
continuously differentiable on (x0,∞) for some x0 ≥ 0, is called a tempered function of degree i
(we write dt = i), if the following hold:

(1) t(i+1)(x) tends monotonically to 0 as x → ∞;

(2) limx→∞ x|t(i+1)(x)| = ∞.

Tempered functions of degree 0 are called Fejér functions.

A big difference between Hardy field functions and tempered functions is that in the latter
class, limits of ratios may not exist. In order to avoid various problematic cases, we will restrict
our study to the following subclass of tempered functions (see [3], [31]):

Let R :=
{

g ∈ C∞(R+) : limx→∞
xg(i+1)(x)

g(i)(x)
∈ R for all i ∈ N0

}

;

Ti :=
{

g ∈ R : ∃ i < α ≤ i+ 1, limx→∞
xg′(x)
g(x) = α, limx→∞ g(i+1)(x) = 0

}

;

and T :=
⋃∞

i=0 Ti.
It is known that every function t ∈ Ti is a tempered function of degree dt = i and satisfies the

growth conditions: xi log x ≺ t(x) ≺ xi+1 (see [3]).
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We will show that our method applies to more general iterates. In particular, we will deal
with functions of the form a = h+ ct, where c ∈ R, h = sh+ ph+ eh ∈ H, a Hardy field function
of polynomial growth, and t ∈ T , a tempered function with max{log, ct} ≺ sh.

As the c = 0 case has been addressed in Theorem 5.1, we will assume without loss of generality
that c = 1 (notice that, for c 6= 0, the condition max{log, ct} ≺ sh becomes t ≺ sh).

Theorem 6.1. Let (X,B, µ, T1, . . . , Td) be a system with commuting and invertible transforma-
tions, and a be a function of the form a = h+t, where h ∈ H, a Hardy field function of polynomial

growth that satisfies limx→∞
xs

(dsh
+1)

h (x)

s
(dsh

)

h (x)
6= 0 and limx→∞

xs
(dsh

+2)

h (x)

s
(dsh

+1)

h (x)
6= 0,32 and t ∈ T , a tem-

pered function, with t ≺ sh. Then (T
[a(n)]
1 )n, . . . , (T

[a(n)]
d )n are jointly ergodic for µ if, and only

if, both of the following conditions are satisfied:

(i) ((TiT
−1
j )[a(n)])n is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii) ((T1 × · · · × Td)
[a(n)])n is ergodic for µ⊗d.

The following is an example of a function a that is covered by Theorem 6.1 but not covered
by Theorem 1.1:

a(x) = xπ/ log x+ x1/2(2 + cos
√

log x).33

As with Conjecture 1, we actually expect a way more general result to hold.

Conjecture 2. Let (X,B, µ, T1, . . . , Td) be a system and log ≺ ai = c1i hi + c2i ti, 1 ≤ i ≤ d,
where, for each 1 ≤ i ≤ d, we have (c1i , c

2
i ) ∈ R2\{(0, 0)}, hi ∈ H and ti ∈ T such that hi

and ti have different polynomial growth rates, satisfying some “standard assumptions”.34 Then

(T
[a1(n)]
1 )n, . . . , (T

[ad(n)]
d )n are jointly ergodic for µ if, and only if, both of the following conditions

are satisfied:

(i)
(

T
[ai(n)]
i T

−[aj(n)]
j

)

n
is ergodic for µ for all 1 ≤ i, j ≤ d, i 6= j; and

(ii)
(

T
[a1(n)]
1 × · · · × T

[ad(n)]
d

)

n
is ergodic for µ⊗d.

Remark 6.2. The reason that we don’t even have Conjecture 2 for the case a1 = . . . = ad
is that, when h ≺ t, or even when sh ≺ t, we cannot guarantee that the function L that we
pick belongs to H, so we cannot apply Proposition 2.1. We believe though that this is a local
obstruction that should be able to be lifted. Similarly, we cannot have the case where t ≺ h
(instead of t ≺ sh that we are assuming in Theorem 6.1), since, as we mentioned in Remark 4.5,
our method cannot treat integer parts of general real polynomial iterates.

To show Theorem 6.1, following the proof of Theorem 1.1, we have to show that the function
a satisfies the conclusion of Theorem 5.1 (for some appropriate function L).

Dropping the eh(x) term, setting b(x) := sh(x) + t(x), it suffices to deal with functions of the
form a(x) = b(x) + ph(x).

32These cannot be simultaneously 0, but if sh1
(x) := log2 x ≺ sh2

(x) := x/ log x, then we have dsh1
= dsh2

= 0

and limx→∞
xs′

h1
(x)

sh1
(x)

= limx→∞
xs′′

h2
(x)

s′
h2

(x)
= 0.

33x1/2(2 + cos
√
log x) is not a Hardy field function (see [3]), so a is not Hardy as well.

34What we mean here are the usual additional assumptions we have to postulate on the growth rates of the
functions (e.g., as the ones in Theorem 6.1) in order to avoid local obstructions.
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If dph < dsh + 1, we set K := dsh + 1, while when dph ≥ dsh + 1, we set K := dph + 1.
We have the following properties.

• b(K) ≺ 1.
We have

b(K) = s
(K)
h + t(K) ≺ 1.

This is true since t′(x) ≪ t(x)
x by the definition of the set R, so, iterating this, we get t(k)(x) ≪ t(x)

xk

for all k ∈ N; also, for all k ∈ N, we have s
(k)
h (x) ≪ sh(x)

xk ([36, Proposition A.1]).

• 1/xK ≺ b(K)(x).

We have already seen that 1/xK ≺ s
(K)
h (x) ([36, Proposition A.2]). So, under the additional

assumptions on sh, since

t(K)(x)

s
(K)
h (x)

=

(

K
∏

i=1

xt(i)(x)

t(i−1)(x)
· s

(i−1)
h (x)

xs
(i)
h (x)

)

· t(x)

sh(x)
→ 0,

we have that

|b(K)(x)|
1
xK

=
|s(K)

h (x)|
1
xK

·
(

1 +
t(K)(x)

s
(K)
h (x)

)

→ ∞.

• |b(K)(x)|− 1
K ≺ |b(K+1)(x)|− 1

K+1 .
We have that

lim
x→∞

xb(K+1)(x)

b(K)(x)
= lim

x→∞

xs
(K+1)
h (x)

s
(K)
h (x)

+ xt(K+1)(x)

t(K)(x)
· t(K)(x)

s
(K)
h (x)

1 + t(K)(x)

s
(K)
h (x)

= lim
x→∞

xs
(K+1)
h (x)

s
(K)
h (x)

∈ R.

So, using the fact that 1/xK ≺ b(K)(x), we get

(

b(K+1)(x)
)K

≪
(

b(K)(x)
)K

xK
≺
(

b(K)(x)
)K+1

.

• Monotonicity of b(K+1).
This follows by the fact that

b(K+2)(x) = s
(K+2)
h (x)

(

1 +
t(K+2)(x)

s
(K+2)
h (x)

)

has (eventually) the same sign as s
(K+2)
h .

We are now in position to prove Theorem 6.1.

Proof of Theorem 6.1. It suffices to show that a satisfies the conclusion of Theorem 5.1. Using
the first three properties we proved for the function b, we can choose, for the corresponding K,
a function L ∈ H such that

1 ≺ |b(K)(x)|− 1
K ≺ L(x) ≺ min

{

|b(K+1)(x)|− 1
K+1 , |b(K)(x)|−

K+1

K2
}

.
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Indeed, we have t(K) ≺ s
(K)
h and t(K+1) ≺ s

(K+1)
h , so b(K) and b(K+1) have the same growth rates

as s
(K)
h and s

(K+1)
h respectively, as b(K)(x)/s

(K)
h (x) → 1 and b(K+1)(x)/s

(K+1)
h (x) → 1, hence,

we can find L ∈ H (see the comments after the proof of Theorem 5.1) such that

1 ≺ |s(K)
h (x)|− 1

K ≺ L(x) ≺ min
{

|s(K+1)
h (x)|− 1

K+1 , |s(K)
h (x)|−

K+1
K2
}

.

Then by the Taylor expansion, for all N, r ∈ N0, there exists ξN,r ∈ [N,N + r] such that

b(N + r) = b(N) + · · ·+ b(K)(N)rK

K!
+

b(K+1)(ξN,r)r
K+1

(K + 1)!
.

If 0 ≤ r ≤ L(N), then, for N sufficiently large, using the monotonicity of b(K+1), we have that

∣

∣

∣

b(K+1)(ξN,r)r
K+1

(K + 1)!

∣

∣

∣ ≤
∣

∣

∣

b(K+1)(N)rK+1

(K + 1)!

∣

∣

∣ ≤
∣

∣

∣

b(K+1)(N)L(N)K+1

(K + 1)!

∣

∣

∣≪ 1.

Denoting by

pN (r) := p(N + r) + b(N) + · · ·+ b(K)(N)rK

K!
,

we have

[a(N + r)] = [pN (r)] + eN,r,

with eN,r ≪ 1. Following the comments after the proof of Theorem 5.1, we have that a satisfies
its conclusion, from where the result follows. �
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